① 什麼是ASIC技術
提供規定的全套功能,通常是用於專門設備中的集成電路。
按用戶需要,面向特定用途而專門設計製作的集成電路。大量生產並標准化的通用集成電路一般不能滿足全部用戶的需要,研製新的電子系統常需各種具有特殊功能或特殊技術指標的集成電路。定製集成電路是解決這個問題的重要途徑之一,是集成電路發展的一個重要方面。
按製作方式可分為全定製集成電路和半定製集成電路。全定製集成電路是按照預期功能和技術指標而專門設計製成的集成電路,製造周期長、成本高 ,製成後不易修改 ,但性能比較理想 ,晶元面積小,集成度高。半定製集成電路製法很多,其中的門陣列法是先將標准電路單元如門電路加工成半成品(門陣列、門海等),然後按用戶的技術要求進行設計,將晶元上的各標准電路單元連成各種功能電路,進而連成所要的大規模集成電路。採用此法,從預制的半成品母片出發,藉助計算機輔助設計系統 ,只須完成一 、兩塊連線用的掩膜版再進行後工序加工,即可得到預期的電路 。 因此研製周期大大縮短 、成本降低、修改設計方便,宜於大批量生產。缺點是晶元面積利用率低,性能不如全定製集成電路。
ASIC的設計手段的演變過程
IC的設計方法和手段經歷了幾十年的發展演變,從最初的全手工設計發展到現在先進的可以全自動實現的過程。這也是近幾十年來科學技術,尤其是電子信息技術發展的結果。從設計手段演變的過程劃分,設計手段經歷了手工設計、計算機輔助設計(ICCAD)、電子設計自動化EDA、電子系統設計自動化ESDA以及用戶現場可編程器階段。集成電路製作在只有幾百微米厚的原形矽片上,每個矽片可以容納數百甚至成千上萬個管芯。集成電路中的晶體管和連線視其復雜程度可以由許多層構成,目前最復雜的工藝大約由6層位於矽片內部的擴散層或離子注入層,以及6層位於矽片表面的連線層組成。就設計方法而言,設計集成電路的方法可以分為全定製、半定製和可編程IC設計三種方式。
全定製設計簡述
全定製ASIC是利用集成電路的最基本設計方法(不使用現有庫單元),對集成電路中所有的元器件進行精工細作的設計方法。全定製設計可以實現最小面積,最佳布線布局、最優功耗速度積,得到最好的電特性。該方法尤其適宜於模擬電路,數模混合電路以及對速度、功耗、管芯面積、其它器件特性(如線性度、對稱性、電流容量、耐壓等)有特殊要求的場合;或者在沒有現成元件庫的場合。
② 可編程邏輯器件的發展史
早期的可編程邏輯器件只有可編程只讀存貯器(PROM)、紫外線可按除只讀存貯器(EPROM)和電可擦除只讀存貯器(EEPROM)三種。由於結構的限制,它們只能完成簡單的數字邏輯功能。
其後,出現了一類結構上稍復雜的可編程晶元,即可編程邏輯器件(PLD),它能夠完成各種數字邏輯功能。典型的PLD由一個「與」門和一個「或」門陣列組成,而任意一個組合邏輯都可以用「與一或」表達式來描述,所以, PLD能以乘積和的形式完成大量的組合邏輯功能。
這一階段的產品主要有PAL(可編程陣列邏輯)和GAL(通用陣列邏輯)。 PAL由一個可編程的「與」平面和一個固定的「或」平面構成,或門的輸.出可以通過觸發器有選擇地被置為寄存狀態。 PAL器件是現場可編程的,它的實現工藝有反熔絲技術、EPROM技術和EEPROM技術。還有一類結構更為靈活的邏輯器件是可編程邏輯陣列(PLA),它也由一個「與」平面和一個「或」平面構成,但是這兩個平面的連接關系是可編程的。 PLA器件既有現場可編程的,也有掩膜可編程的。 在PAL的基礎上,又發展了一種通用陣列邏輯GAL (Generic Array Logic),如GAL16V8,GAL22V10 等。它採用了EEPROM工藝,實現了電可按除、電可改寫,其輸出結構是可編程的邏輯宏單元,因而它的設計具有很強的靈活性,至今仍有許多人使用。 這些早期的PLD器件的一個共同特點是可以實現速度特性較好的邏輯功能,但其過於簡單的結構也使它們只能實現規模較小的電路。
為了彌補這一缺陷,20世紀80年代中期。 Altera和Xilinx分別推出了類似於PAL結構的擴展型 CPLD(Complex Programmab1e Logic Dvice)和與標准門陣列類似的FPGA(Field Programmable Gate Array),它們都具有體系結構和邏輯單元靈活、集成度高以及適用范圍寬等特點。 這兩種器件兼容了PLD和通用門陣列的優點,可實現較大規模的電路,編程也很靈活。與門陣列等其它ASIC(Application Specific IC)相比,它們又具有設計開發周期短、設計製造成本低、開發工具先進、標准產品無需測試、質量穩定以及可實時在線檢驗等優點,因此被廣泛應用於產品的原型設計和產品生產(一般在10,000件以下)之中。幾乎所有應用門陣列、PLD和中小規模通用數字集成電路的場合均可應用FPGA和CPLD器件。
③ 什麼是ASIC
ASIC即專用集成電路,是指應特定用戶要求和特定電子系統的需要而設計、製造的集成電路。
用CPLD(復雜可編程邏輯器件)和FPGA(現場可編程邏輯陣列)來進行ASIC設計是最為流行的方式之一,它們的共性是都具有用戶現場可編程特性,都支持邊界掃描技術,但兩者在集成度、速度以及編程方式上具有各自的特點。
雖然有部分集成電路標准化,但在整個電腦系統中仍有不少獨立IC,過多的IC使得運行效率不如預期,ASIC技術應運而生。
同時系統工程師可以直接利用邏輯門元件資料庫設計IC,不必了解晶體管線路設計的細節部分,設計觀念上的改變使得專職設計的Fabless公司出現,專業晶圓代工廠Foundry的出現填補了Fabless公司需要的產能。
(3)asic的發展歷史擴展閱讀
由於ASIC的便利性和良好的可靠性,逐漸越來越多的應用於安全相關產品的設計開發,如智能的安全變送器、安全匯流排介面設備或安全控制器。
然而,由於不同於傳統的模擬電路或一般IC,如何評價ASIC的功能安全性,包括當ASIC集成到產品開發時,如何評價產品的功能安全性,逐漸成為了一個新的問題和熱點。
ASIC有其自身的一些復雜性特點。例如一塊ASIC上可能有上億個MOS管,每個MOS管都有可能發生失效,如何判斷和控制這些失效時功能安全需要考慮的問題:又如ASIC設計過程中需要利用Verilog等專用工具,如何評價這些工具的適用性,以及對開發流程的質量控制等也是需要解決的問題。
④ 我國 IC 產業誕生於六十年代,經歷了四個發展階段,分別是什麼
自發明集成電路(IC)後,隨著硅平面技術的發展,二十世紀六十年代先後發明了雙極型和MOS型兩種重要的集成電路,它標志著由電子管和晶體管製造電子整機的時代發生了量和質的飛躍,創造了一個前所未有的具有滲透力和生命力的新興產業集成電路產業。
發展歷程主要有以下幾點
一、世界集成電路產業結構的變化及其發展歷程
回顧集成電路的發展歷程,我們可以看到,自發明集成電路40多年以來,"從電路集成到系統集成"這句話是對IC產品從小規模集成電路(SSI)到特大規模集成電路(ULSI)發展過程的最好總結,即整個集成電路產品的發展經歷了從傳統的板上系統(System-on-board)到片上系統(System-on-a-chip)的過程。在這歷史過程中,世界IC產業為適應技術的發展和市場的需求,其產業結構經歷了三次變革。
第一次變革:以加工製造為主導的IC產業發展的初級階段。
70年代,集成電路的主流產品是微處理器、存儲器以及標准通用邏輯電路。這一時期IC製造商(IDM)在IC市場中充當主要角色,IC設計只作為附屬部門而存在。這時的IC設計和半導體工藝密切相關。IC設計主要以人工為主,CAD系統僅作為數據處理和圖形編程之用。IC產業僅處在以生產為導向的初級階段。
第二次變革:Foundry公司與IC設計公司的崛起。
80年代,集成電路的主流產品為微處理器(MPU)、微控制器(MCU)及專用IC(ASIC)。這時,無生產線的IC設計公司(Fabless)與標准工藝加工線(Foundry)相結合的方式開始成為集成電路產業發展的新模式。
隨著微處理器和PC機的廣泛應用和普及(特別是在通信、工業控制、消費電子等領域),IC產業已開始進入以客戶為導向的階段。一方面標准化功能的 IC已難以滿足整機客戶對系統成本、可靠性等要求,同時整機客戶則要求不斷增加IC的集成度,提高保密性,減小晶元面積使系統的體積縮小,降低成本,提高產品的性能價格比,從而增強產品的競爭力,得到更多的市場份額和更豐厚的利潤;另一方面,由於IC微細加工技術的進步,軟體的硬體化已成為可能,為了改善系統的速度和簡化程序,故各種硬體結構的ASIC如門陣列、可編程邏輯器件(包括FPGA)、標准單元、全定製電路等應運而生,其比例在整個IC銷售額中 1982年已佔12%;其三是隨著EDA工具(電子設計自動化工具)的發展,PCB設計方法引入IC設計之中,如庫的概念、工藝模擬參數及其模擬概念等,設計開始進入抽象化階段,使設計過程可以獨立於生產工藝而存在。有遠見的整機廠商和創業者包括風險投資基金(VC)看到ASIC的市場和發展前景,紛紛開始成立專業設計公司和IC設計部門,一種無生產線的集成電路設計公司(Fabless)或設計部門紛紛建立起來並得到迅速的發展。同時也帶動了標准工藝加工線(Foundry)的崛起。全球第一個Foundry工廠是1987年成立的台灣積體電路公司,它的創始人張忠謀也被譽為"晶晶元加工之父"。
第三次變革:"四業分離"的IC產業
90年代,隨著INTERNET的興起,IC產業跨入以競爭為導向的高級階段,國際競爭由原來的資源競爭、價格競爭轉向人才知識競爭、密集資本競爭。以DRAM為中心來擴大設備投資的競爭方式已成為過去。如1990年,美國以Intel為代表,為抗爭日本躍居世界半導體榜首之威脅,主動放棄 DRAM市場,大搞CPU,對半導體工業作了重大結構調整,又重新奪回了世界半導體霸主地位。這使人們認識到,越來越龐大的集成電路產業體系並不有利於整個IC產業發展,"分"才能精,"整合"才成優勢。於是,IC產業結構向高度專業化轉化成為一種趨勢,開始形成了設計業、製造業、封裝業、測試業獨立成行的局面(如下圖所示),近年來,全球IC產業的發展越來越顯示出這種結構的優勢。如台灣IC業正是由於以中小企業為主,比較好地形成了高度分工的產業結構,故自1996年,受亞洲經濟危機的波及,全球半導體產業出現生產過剩、效益下滑,而IC設計業卻獲得持續的增長。
特別是96、97、98年持續三年的DRAM的跌價、MPU的下滑,世界半導體工業的增長速度已遠達不到從前17%的增長值,若再依靠高投入提升技術,追求大尺寸矽片、追求微細加工,從大生產中來降低成本,推動其增長,將難以為繼。而IC設計企業更接近市場和了解市場,通過創新開發出高附加值的產品,直接推動著電子系統的更新換代;同時,在創新中獲取利潤,在快速、協調發展的基礎上積累資本,帶動半導體設備的更新和新的投入;IC設計業作為集成電路產業的"龍頭",為整個集成電路產業的增長注入了新的動力和活力。
同時,IC按功能可分為:數字IC、模擬IC、微波IC及其他IC,其中,數字IC是近年來應用最廣、發展最快的IC品種。數字IC就是傳遞、加工、處理數字信號的IC,可分為通用數字IC和專用數字IC。
通用IC:是指那些用戶多、使用領域廣泛、標准型的電路,如存儲器(DRAM)、微處理器(MPU)及微控制器(MCU)等,反映了數字IC的現狀和水平。
專用IC(ASIC):是指為特定的用戶、某種專門或特別的用途而設計的電路。
集成電路產品有以下幾種設計、生產、銷售模式。
1.IC製造商(IDM)自行設計,由自己的生產線加工、封裝,測試後的成品晶元自行銷售。
2.IC設計公司(Fabless)與標准工藝加工線(Foundry)相結合的方式。設計公司將所設計晶元最終的物理版圖交給Foundry加工製造,同樣,封裝測試也委託專業廠家完成,最後的成品晶元作為IC設計公司的產品而自行銷售。打個比方,Fabless相當於作者和出版商,而 Foundry相當於印刷廠,起到產業"龍頭"作用的應該是前者。
三、國內IC市場展望
國內外半導體市場將快速復甦,從2010年開始,無論是國內市場還是國際市場,都超過了兩位數的增長。中長期看,未來國內外市場的因一部回暖,電子信息產業將步入一個新的增長格局。「十五」後期到「十一五」初期,是我們國家電子信息產業發展非常好的時期,可望從開始,又將出現第二輪新的發展趨勢。
從行業發展趨勢看,設計業仍將是國內IC產業中最具發展活力的領域。在創業板推出鼓舞下,德可威(音)、海爾集成電路、深圳興邦(音)、華亞(音)等多家企業正在醞釀登陸IPO市場,這將為國內的產業發展注入大量資金,並將吸引更多的風險投資投入到IC設計領域,將極大的推進IC設計行業的發展。晶元製造和封裝設計領域,在出口拉動下,將呈現顯著增長趨勢,特別是晶元製造業。晶元製造業規模在未來兩年,將有快速的增長。華為等多家IC設計企業已經開發下一代IC產品,並投入到手機、便攜電子產品等終端產品應用中。長電(音)科技等封裝測試企業在不斷擴大生產規模的同時,在CSP等先進封裝工藝方面取得突破。國家01、02專項正在深度實施,將大力促進產業發展。
國家大力發展戰略新興產業,為半導體產業帶來了極大的機遇。國家明確加快培育新材料、節能環保等戰略新興產業,這不僅將成為十大產業振興規劃之後國家經濟增長的又一強大動力,更將為國內的IC產業發展提供難得的機遇。在國家大力發展戰略新興產業的大背景下,3G、移動通信、半導體照明、汽車電子等新興領域正在迅速發展,系中孕育著巨大市場,將促進我國的IC產業進一步發展。
⑤ LSI的發展歷程
1979 年,Wilfred Corrigan 辭掉仙童半導體公司 (Fairchild Semiconctor) 的首席執行官職務後,開始著手在加利福尼亞州的米爾皮塔斯創建 LSI 公司,當時主要業務是半導體 ASIC。LSI公司的其他三位聯合創始人是 Bill O'Meara(負責市場營銷與銷售)、Rob Walker(負責工程設計)及 Mitchell Mick Bohn(負責財務)。
1981年,LSI公司於宣布正式成立,起始資金為 600 萬美元,來自紅杉資本等著名風險投資公司。1982年,公司完成了第二輪引資工作,籌集了1600萬美元。1983 年 5 月 13 日星期五,公司在Nasdaq股票交易所上市,股票代號為 LSI,IPO 市值高達 1.53 億美元,創下了當時有史以來最大規模的技術公司 IPO 市值記錄。
之後,LSI公司在日本、歐洲和加拿大建立了獨立的聯營公司,將業務范圍擴展到全球:位於日本東京的 Nihon LSI Logic 公司於 1984 年 4 月以私募方式成功融資了 2000 萬美元;位於英國布拉克內爾的 LSI Logic 公司於 1984 年 6 月以私募方式成功融資了 2000 萬美元;位於加拿大阿爾伯塔 (Alberta) 和卡爾加里(Calgary) 的 LSI Logic Canada 公司則在多倫多股票交易所上市。
2005 年,隨著 ASIC 市場的成熟,第三方設計工具不斷普及以及晶片製造廠建設成本的不斷提高,LSI 公司重新成為Fabless無工廠半導體設計公司。在發展半導體 業務期間,LSI公司通過一系列的並購和投資,逐漸專注於數據存儲與移動網路兩大核心領域,並在這兩大領域居於領導地位。
⑥ 數控系統的發展歷程是什麼樣的
數控系統及相關的自動化產品主要是為數控機床配套。數控機床是以數控系統為代表的新技術對傳統機械製造產業的滲透而形成的機電一體化產品:數控系統裝備的機床大大提高了零件加工的精度、速度和效率。這種數控的工作母機是國家工業現代化的重要物質基礎之一。
數值控制(簡稱「數控」或「NC」)的概念是把被加工的機械零件的要求,如形狀、尺寸等信息轉換成數值數據指令信號傳送到電子控制裝置,由該裝置控制驅動機床刀具的運動而加工出零件。而在傳統的手動機械加工中,這些過程都需要經過人工操縱機械而實現,很難滿足復雜零件對加工的要求,特別對於多品種、小批量的零件,加工效率低、精度差。
1952年,美國麻省理工學院與帕森斯公司進行合作,發明了世界上第一台三坐標數控銑床。控制裝置由2000多個電子管組成,約一個普通實驗室大小。伺服機構採用一台小伺服馬達改變液壓馬達斜盤角度以控制液動機速度。其插補裝置採用脈沖乘法器。這台NC機床的研製成功標志著NC技術的開創和機械製造的一個新的、數值控制時代的開始。
軟體的應用:
在1970年的芝加哥展覽會上,首次展出了由小型機組成的CNC數控系統。大約在同時,英特爾公司發明了微處理器。1974年,美、日等國相繼研製出以微處理器為核心的CNC,有時也稱為MNC。它運用計算機存貯器里的程序完成數控要求的功能。其全部或部分控制功能由軟體實現,包括解碼、刀具補償、速度處理、插補、位置控制等。採用半導體存貯器存貯零件加工程序,可以代替打孔的零件紙帶程序進行加工,這種程序便於顯示、檢查、修改和編輯,因而可以減少系統的硬體配置,提高系統的可靠性。採用軟體控制大大增加了系統的柔性,降低了系統的製造成本。
數控標準的引入:
隨著NC成為機械自動化加工的重要設備,在管理和操作之間,都需要有統一的術語、技術要求、符號和圖形,即有統一的標准,以便進行世界性的技術交流和貿易。NC技術的發展,形成了多個國際通用的標准:即ISO國際標准化組織標准、IEC國際電工委員會標准和EIA美國電子工業協會標准等。最早制訂的標准有NC機床的坐標軸和運動方向、NC機床的編碼字元、NC機床的程序段格式、准備功能和輔助功能、數控紙帶的尺寸、數控的名詞術語等。這些標準的建立,對NC技術的發展起到了規范和推動作用。ISO基於用戶的需要和對下一個5年間信息技術的預測,又在醞釀推出新標准「CNC控制器的數據結構」。它把AMT(先進製造技術)的內容集中在兩個主要的級別和它們之間的連接上:第一級CAM,為車間和它的生產機械:第二級是上一級,為數據生成系統,由CAD、CAP、CAE和NC編程系統及相關的資料庫組成。
伺服技術的發展:
伺服裝置是數控系統的重要組成部分。20世紀50年代初,世界第一台NC機床的進給驅動採用液壓驅動。由於液壓系統單位面積產生的力大於電氣系統所產生的力(約為20:1),慣性小、反應快,因此當時很多NC系統的進給伺服為液壓系統。70年代初期,由於石油危機,加上液壓對環境的污染以及系統笨重、效率低等原因,美國GETTYS公司開發出直流大慣量伺服電動機,靜力矩和起動力矩大,性能良好,FANUC公司很快於1974年引進並在NC機床上得到了應用。從此,開環的系統逐漸被閉環的系統取代,液壓伺服系統逐漸被電氣伺服系統取代。
電伺服技術的初期階段為模擬控制,這種控制方法雜訊大、漂移大。隨著微處理器的採用,引入了數字控制。它有以下優點:①無溫漂,穩定性好。②基於數值計算,精度高。③通過參數對系統設定,調整減少。④容易做成ASIC電路。對現代數控系統,伺服技術取得的最大突破可以歸結為:交流驅動取代直流驅動、數字控製取代模擬控制、或者稱為軟體控製取代硬體控制。20世紀90年代,許多公司又研製了直線電動機,由全數字伺服驅動,剛性高,頻響好,因而可獲得高速度。
自動編程的採用:
編程的方法有手工編程和自動編程兩種。據統計分析,採用手工編程,一個零件的編程時間與機床加工之比,平均約為30:1。為了提高效率,必須採用計算機或程編機代替手工編程。自動編程需要有自動化編程語言,其中麻省理工學院研製的APT語言是最典型的一種數控語言,它大大地提高了編程效率。從70年代開始出現的圖象數控編程技術有效地解決了幾何造型、零件幾何形狀的顯示、交互設計、修改及刀具軌跡生成、走刀過程的模擬顯示、驗證等,從而推動了CAD和CAM向一體化方向發展。
DNC概念的引入及發展:
DNC概念從「直接數控」到「分布式數控」的變化,其內涵也發生了變化。「分布式數控」表明可用一台計算機控制多台數控機床。這樣,機械加工從單機自動化的模式擴展到柔性生產線及計算機集成製造系統。從通信功能而言,可以在CNC系統中增加DNC介面,形成製造通信網路。網路的最大特點是資源共享,通過DNC功能形成網路可以實現:①對零件程序的上傳或下傳。②讀、寫CNC的數據。③PLC數據的傳送。④存貯器操作控制。⑤系統狀態採集和遠程式控制制等。:
可編程式控制制器的採用:
在20世紀70年代以前,NC控制器與機床強電順序控制主要靠繼電器進行。60年代出現了半導體邏輯元件,1969年美國DEC公司研製出世界上第一台可編程序控制器PLC。PLC很快就顯示出優越性:設計的圖形與繼電器電路相似,形象直觀,可以方便地實現程序的顯示、編輯、診斷、存貯和傳送:PLC沒有繼電器電路那種接觸不良,觸點熔焊、磨損、線圈燒斷等缺點。因此很快在NC機床上得到應用。在NC機床上指令執行時間可達到0.085µs/步,最大步數為32000步。而且,使用PLC還可以大大減少系統的佔用空間,提高系統的快速性和可靠性。
感測器技術的發展:
一台NC系統與機械連結在一起時,它能控制的幾何精度除受機械因素的影響外,閉環系統還主要取決於所採用的感測器,特別是位置和速度感測器,如可測量直線位移和旋轉角度的直線感應同步器和圓感應同步器、直線和圓光柵、磁尺、利用磁阻的感測器等。這些感測器由光學、精密機械、電子部件組成,一般解析度為0.01~0.001mm,測量精度為±0.02~0.002mm/m,機床工作台速度為20m/min以下。隨著機床精度的不斷提高,對感測器的解析度和精度也提出了更高的要求。於是出現了具有「細分」電路的高解析度感測器,比如FANUC公司研製的編碼器通過細分可做到解析度為10-7r。利用它構成的高精度數控系統為超精控制及加工創造了條件。
開放技術的產生:
1987年美國空軍發表了著名的「NGC(下一代控制器)」計劃,首先提出了開放體系結構的控制器概念。這個計劃的重要內容之一便是提出了「開放系統體系結構標准規格(SOSAS)」。美國空軍把開放的體系結構定義為:在競爭的環境中允許多個製造商銷售可相互交換和相互操作的模塊。機床製造商可以在開放系統的平台上增加一定的硬體和軟體構成自己的系統。當前在市場上開放系統基本上有兩種結構:①CNC+PC主板:把一塊PC主板插入傳統的CNC機器中,PC板主要運行非實時控制,CNC主要運行以坐標軸運動為主的實時控制。②PC+運動控制板:把運動控制板插入PC機的標准插槽中作實時控制用,而PC機主要作非實時控制。為了增加開放性,主流數控系統生產廠家往往採用方案①,即在不改變原系統基本結構的基礎上增加一塊PC板,提供鍵盤使用戶能把PC和CNC聯系在一起,大大提高了人機界面的功能。典型的如FANUC公司的150/160/180/210系統。有些廠家也把這種裝置稱為融合系統(fusionsystem),由於它工作可靠,界面開放,越來越受到機床製造商的歡迎,成為NC技術的發展趨勢之一。
我國數控系統雖取得了較大發展,但是我國高檔數控機床配套的數控系統90%以上的都是國外產品,特別是對於國防工業急需的高檔數控機床,高檔數控系統是決定機床裝備的性能、功能、可靠性和成本的關鍵因素,而國外對我國至今仍進行封鎖限制,成為制約我國高檔數控機床發展的瓶頸。為加快數控技術行業的發展,國家出台了一系列政策,包括國務院批准實施《裝備製造業調整和振興計劃》和《高檔數控機床與基礎製造裝備》國家科技重大專項計劃,為我國數控技術行業創造了良好的外部環境,《裝備製造業調整和振興規劃》明確提出:「堅持裝備自主化與重點建設工程相結合,堅持自主開發與引進消化吸收相結合,堅持發展整機與提高基礎配套水平相結合的基本原則」,提升數控系統等基礎配套件的市場佔有率,是落實裝備自主化的重要內容。國家科技重大專項《高檔數控機床與基礎製造裝備》也提出,到2020年,國產高檔數控機床的市場佔有率要實現較大程度的提高。
目前我國正處於工業化中期,即從解決短缺為主逐步向建設經濟強國轉變,煤炭、汽車、鋼鐵、房地產、建材、機械、電子、化工等一批以重工業為基礎的高增長行業發展勢頭強勁,構成了對機床市場尤其是數控機床的巨大需求。我國機床消費額從2002年起已經連續8年排名世界第一。2009年,中國機床消費額大於世界排名第二位的日本和第三位的德國消費額之和。據國家發展改革委副主任張國寶於《在數控系統產業發展座談會上的講話》介紹,未來若干年內,我國數控機床市場需求量將繼續以年均10-15%的速度增長,市場潛力巨大。隨著中國製造業升級,中國現有普通機床也亟需改造升級,因此,數控系統行業市場空間廣闊,具備進一步發展的巨大潛力。
⑦ 誰知道ATI和nvidia的顯卡發展史
ATi大事回顧
1985年 8月日 ATi公司成立
10月ATi使用ASIC技術開發出了第一款圖形晶元和圖形卡
1987年 7月 ATi發布了 EGA Wonder 和 VGA Wonder 圖形卡
1988年 4月 ATi參與制定了 VESA 標准
1991年 5月 ATi發布了 Mach8 雙晶元圖形卡
1992年 4月 ATi發布了 Mach32 圖形卡集成了圖形加速功能
ATi發布了 VLB(VESA本地匯流排)和PCI匯流排 的產品
5月 ATi成立了德國子公司
1993年 11月 ATi成為一家上市公司,在多倫多股票交易市場掛牌,股票代碼:ATY
1994年 8月 ATi發布了 Mach64 圖形晶元
11月 ATi的圖形卡驅動和應用軟體可以支持13個國家的語言
1995年 6月 ATi成為第一家支持APPLE MAC的顯示卡廠商,同時也是第一家支持PC和MAC雙平台的廠商
1996年 1月 ATi發布了業內第一款3D圖形晶元,並在一年中銷售了超過100萬個
7月 ATi成立愛爾蘭公司作為歐洲的運營總部
8月 ATi宣布了首款MAC機用PCI基板
9月 ATi成為第一家將電腦圖像顯示在電視上的公司
11月 ATi成為第一家將3D圖形晶元引入筆記本市場的公司
ATi成為第一家將TV卡附加到顯示卡的公司
1997年 2月 ATi發布3D RAGE II+ DVD 晶元,這是第一款圖形加速加DVD屏幕補償軟體產品
3月 ATi成為第一家完發布全支持AGP 2X產品的公司
ATi成為第一家供應硬體DVD加速產品的公司
1998年 4月 ATi被IDC評選為圖形晶元工業的市場領導者
5月 ATi為市場份額前10名的個人計算機製造商提供更多的OEM產品
8月 ATi成為AGP市場的領導者,銷售了一千萬個AGP圖形晶元
ATi發布RAGE MAGNUM 圖形晶元,這是一款針對高端OEM客戶的產品
ATi發布新一代RAGE 128 GL 圖形晶元
9月 ATi的RAGE LT PRO 圖形晶元領導筆記本市場
10月 ATi獲得Chromatic Research Inc.開發的system-on-a-chip(SOC)技術
ATi通過收購SiByte Inc.獲得了MIPS處理器
1999年 1月 ATi公司董事會主席兼CEO K.Y. Ho被經濟周刊評選為最具影響力的25位商業領袖之一
2月 ATi發布RAGE MOBILITY M1,這是世界上第一塊內置8M顯存的筆記本圖形晶元
ATi的RAGE 128 Pro第一個在3D WinBench99中超過700分,基於RAGE 128的RAGE FURY 32MB得到743 Winmarks的成績,成為世界上最快的顯示卡
4月 ATi出售500萬個RAGE MOBILITY 圖形晶元
7月 ATi年銷售額達到10億美元
2000年 2月 ATi成為全世界的移動圖形解決方案領導者
4月 ATi完成對ArtX Inc.的收購,K.Y. Ho成為ATi公司主席兼CEO,David E. Orton成為董事會主席兼COO
ATi發布RADEON 圖形晶元,這是世界上最強的圖形處理器。RADEON標志著ATi進入高端游戲和3D工作站市場
2001年 2月 ATi發布MOBILITY RADEON 圖形晶元
3月 ATi獲得FireGL晶元,從而進入高性能圖形工作站市場
7月 ATi獲得HYDRAVISION桌面管理軟體
8月 ATi發布RADEON 8500,這是第一款完全支持DirectX 8.1規格的產品
ATi發布FireGL 8800 工作站圖形卡
ATi發布MOBILITY RADEON 7500
ATi發布ALL-IN-WONDER RADEON 8500DV
10月 ATi發布XILLEON 220,這是世界上集成度最高的system-on-chip產品
ATi發布RADEON 7000 和 7200
11月 ATi發布MOBILITY FireGL 7800和FireGL 8700工作站圖形卡
2002年 1月 ATi公司獲得OPenGL標准委員會的永久會員資格
ATi發布RADEON 8500 MAC版和RADEON 7000 MAC版雙頭圖形卡
ATi憑借IMAGEON 100 進入無線市場,這款產品專為PDA和Smart Phone設計
4月 ATi在北美發布System Integrator Partner Program
6月 ATi獲得NxtWave通信公司的機頂盒技術
7月 ATi新的FIREGL X1幫助DCC和CAD工作站進入新紀元,ATi擁有了世界上最先進的工作站圖形卡和OpenGL, Microsoft DirectX 9.0 以及 Linux 圖形解決方案
ATi發布RADEON 9700,RADEON 9000 和RADEON 9000 Pro
8月 ATi發布MOBILITY RADEON 9000 和RADEON 9700 PRO
9月 ATi發布新版的ALL-IN-WONDER 9700 PRO 和MOBILITY FIREGL 9000
10月 ATi展示了世界上第一塊使用DDR-2技術的圖形卡
11月 ATi的RADEON 9700 PRO 贏得了PC Magazine 2002卓越技術獎
ATi發布新一代掌上多媒體晶元IMAGEON 3200
⑧ ic產業的發展歷程
一、世界集成電路產業結構的變化及其發展歷程
回顧集成電路的發展歷程,我們可以看到,自發明集成電路至今40多年以來,從電路集成到系統集成這句話是對IC產品從小規模集成電路(SSI)到今天特大規模集成電路(ULSI)發展過程的最好總結,即整個集成電路產品的發展經歷了從傳統的板上系統(System-on-board)到片上系統(System-on-a-chip)的過程。在這歷史過程中,世界IC產業為適應技術的發展和市場的需求,其產業結構經歷了三次變革。
第一次變革:以加工製造為主導的IC產業發展的初級階段。
70年代,集成電路的主流產品是微處理器、存儲器以及標准通用邏輯電路。這一時期IC製造商(IDM)在IC市場中充當主要角色,IC設計只作為附屬部門而存在。這時的IC設計和半導體工藝密切相關。IC設計主要以人工為主,CAD系統僅作為數據處理和圖形編程之用。IC產業僅處在以生產為導向的初級階段。
第二次變革:Foundry公司與IC設計公司的崛起。
80年代,集成電路的主流產品為微處理器(MPU)、微控制器(MCU)及專用IC(ASIC)。這時,無生產線的IC設計公司(Fabless)與標准工藝加工線(Foundry)相結合的方式開始成為集成電路產業發展的新模式。
隨著微處理器和PC機的廣泛應用和普及(特別是在通信、工業控制、消費電子等領域),IC產業已開始進入以客戶為導向的階段。一方面標准化功能的 IC已難以滿足整機客戶對系統成本、可靠性等要求,同時整機客戶則要求不斷增加IC的集成度,提高保密性,減小晶元面積使系統的體積縮小,降低成本,提高產品的性能價格比,從而增強產品的競爭力,得到更多的市場份額和更豐厚的利潤;另一方面,由於IC微細加工技術的進步,軟體的硬體化已成為可能,為了改善系統的速度和簡化程序,故各種硬體結構的ASIC如門陣列、可編程邏輯器件(包括FPGA)、標准單元、全定製電路等應運而生,其比例在整個IC銷售額中 1982年已佔12%;其三是隨著EDA工具(電子設計自動化工具)的發展,PCB設計方法引入IC設計之中,如庫的概念、工藝模擬參數及其模擬概念等,設計開始進入抽象化階段,使設計過程可以獨立於生產工藝而存在。有遠見的整機廠商和創業者包括風險投資基金(VC)看到ASIC的市場和發展前景,紛紛開始成立專業設計公司和IC設計部門,一種無生產線的集成電路設計公司(Fabless)或設計部門紛紛建立起來並得到迅速的發展。同時也帶動了標准工藝加工線(Foundry)的崛起。全球第一個Foundry工廠是1987年成立的台灣積體電路公司,它的創始人張忠謀也被譽為晶晶元加工之父。
第三次變革:四業分離的IC產業
90年代,隨著INTERNET的興起,IC產業跨入以競爭為導向的高級階段,國際競爭由原來的資源競爭、價格競爭轉向人才知識競爭、密集資本競爭。以DRAM為中心來擴大設備投資的競爭方式已成為過去。如1990年,美國以Intel為代表,為抗爭日本躍居世界半導體榜首之威脅,主動放棄 DRAM市場,大搞CPU,對半導體工業作了重大結構調整,又重新奪回了世界半導體霸主地位。這使人們認識到,越來越龐大的集成電路產業體系並不有利於整個IC產業發展,分才能精,整合才成優勢。於是,IC產業結構向高度專業化轉化成為一種趨勢,開始形成了設計業、製造業、封裝業、測試業獨立成行的局面(如下圖所示),近年來,全球IC產業的發展越來越顯示出這種結構的優勢。如台灣IC業正是由於以中小企業為主,比較好地形成了高度分工的產業結構,故自1996年,受亞洲經濟危機的波及,全球半導體產業出現生產過剩、效益下滑,而IC設計業卻獲得持續的增長。
特別是96、97、98年持續三年的DRAM的跌價、MPU的下滑,世界半導體工業的增長速度已遠達不到從前17%的增長值,若再依靠高投入提升技術,追求大尺寸矽片、追求微細加工,從大生產中來降低成本,推動其增長,將難以為繼。而IC設計企業更接近市場和了解市場,通過創新開發出高附加值的產品,直接推動著電子系統的更新換代;同時,在創新中獲取利潤,在快速、協調發展的基礎上積累資本,帶動半導體設備的更新和新的投入;IC設計業作為集成電路產業的龍頭,為整個集成電路產業的增長注入了新的動力和活力。
⑨ 雙顯卡的發展歷程
雙卡互聯就是所謂的SLI和CrossFire技術。
隨著PCI-E平台的在市場中的逐步推廣,NVIDIA將原來3DFX公司的Voodoo2 SLI技術再次引入,並在此基礎上加以改進正式發布了以融合NVIDIA自身特點的SLI技術。SLI 全稱Scalable Link Interface,是NVIDIA公司於2007年6月28日推出的一種革命性技術。能讓多塊NVIDIAGeForce系列或者NVIDIAQuadro顯卡工作在一台個人計算機或工作站上,從而極大地提升圖形性能。
時間回到2004年,nVIDIA推出了核心代號為NV40的Geforce 6800Ultra,NV40的性能比上代產品幾乎提升了一倍,使得nVIDIA再次重回久違的性能之王寶座,而ATi方面則顯然沒有預料到NV40的性能會是如此的強大,核心代號為R420的Radeon X800 XT倉促應戰,結果性能之爭仍是Geforce 6800Ultra略勝一籌。旗艦產品,是一家公司技術方面的象徵,而性能之王,則是技術領先的印證。於是ATi再將Radeon X800XT的頻率作進一步的提升,推出了擁有怪獸級散熱器和超高時鍾頻率武裝的ATI Radeon X850 XT PE,將最強游戲單卡的王座奪下。而奇怪的是,nVIDIA方面似乎對此熟視無睹,還宣布取消NV48的開發計劃。而到了6月29日,也就是nVIDIA收購3DFX三周年的日子,nVIDIA正式發布了SLI技術將使用在NV4X顯卡上,憑借可以將兩張顯卡同時工作而獲得基本成倍性能提升的SLI系統對抗ATi。
nVIDIA官方聲稱SLI系統能夠提供相對單卡1.9倍的性能,聯想到單張Geforce 6800Ultra令人驚訝的強勁性能,而只要購買兩張Geforce 6800Ultra則可以獲得單張Geforce 6800Ultra1.9倍的性能,難怪全世界的發燒友都對SLI系統情有獨鍾。
多顯卡鼻祖3dfx
談到雙核顯卡,我們不得不提一下3dfx,它是怪獸——多GPU顯卡的鼻祖,早在1998年,3dfx因為想讓自己的顯卡在現有的技術基礎上進一步提升,就在Voodoo2上應用了SLI技術,它是現在NVIDIA SLI的前身——將兩塊Voodoo2分別插入PCI槽,並用一根數據電纜連接起來,通過驅動程序的控制,使兩塊Voodoo2協調工作。在當時,對於硬體的需求可以說是非常奢侈。在2000年,3dfx又推出了集成多晶元的Voodoo 5,這是早期較出名的多核顯卡。同樣在2000年,ATI推出了一種Dual ASIC雙晶元技術,其原理是在Rage Fury MAXX顯卡內建2顆Rage 128 Pro繪圖晶元,兩個繪圖晶元輪流工作,每個繪圖晶元負責一幀(frame)畫面,交替進行以提高像素填充率和三角形生成率。
雙顯卡技術能把圖形處理能力提高一倍,在實際應用中,除了極少數測試之外,在實際游戲中圖形性能只能提高30%-70%不等,在某些情況下甚至根本沒有性能提高,而且目前能良好支持SLI的游戲還不太多。當然,隨著驅動程序的完善,目前存在的這些問題應該能得到逐步解決。
⑩ 組合邏輯電路發展史
1
數字技術
發展階段
*初期(1940~1960):電子管
*第二階段版(1960):晶體管
*第三階段(60末~70中):集成電路權
*第四階段(70中~80中):LSI和VLSI
*第五階段(80中~
):ASIC