導航:首頁 > 文化發展 > 人工智慧發展有很長的歷史其中

人工智慧發展有很長的歷史其中

發布時間:2021-03-06 04:03:59

Ⅰ 人工智慧到目前為止經歷怎樣的發展歷程

一是起步發展期:20世紀年代—20世紀60年代初。人工智慧概念提出後,相繼取得了一批令人矚目的研究成果,如機器定理證明、跳棋程序等,掀起人工智慧發展的第一個高潮。
二是反思發展期:20世紀60年代—20世紀70年代初。人工智慧發展初期的突破性進展大大提升了人們對人工智慧的期望,人們開始嘗試更具挑戰性的任務,並提出了一些不切實際的研發目標。然而,接二連三的失敗和預期目標的落空,例如無法用機器證明兩個連續函數之和還是連續函數、機器翻譯鬧出笑話等,使人工智慧的發展跌入低谷。
三是應用發展期:20世紀70年代初—20世紀80年代中。20世紀70年代出現的專家系統模擬人類專家的知識和經驗解決特定領域的問題,實現了人工智慧從理論研究走向實際應用、從一般推理策略探討轉向運用專門知識的重大突破。專家系統在醫療、化學、地質等領域取得成功,推動人工智慧走入應用發展的新高潮。
四是低迷發展期:20世紀80年代中期—20世紀90年代中期。隨著人工智慧的應用規模不斷擴大,專家系統存在的應用領域狹窄、缺乏常識性知識、知識獲取困難、推理方法單一、缺乏分布式功能、難以與現有資料庫兼容等問題逐漸暴露出來。
五是穩步發展期:20世紀90年代中—21世紀初。由於網路技術特別是互聯網技術的發展,加速了人工智慧的創新研究,推動人工智慧技術進一步走向實用化。1997年國際商業機器公司(簡稱IBM)深藍超級計算機戰勝了國際象棋世界冠軍卡斯帕羅夫,2008年IBM提出「智慧地球」的概念。以上都是這一時期的標志性事件。
六是蓬勃發展期:2011年至今。隨著大數據、雲計算、互聯網、物聯網等信息技術的發展,泛在感知數據和圖形處理器等計算平台推動以深度神經網路為代表的人工智慧技術飛速發展,大幅跨越了科學與應用之間的「技術鴻溝」,諸如圖像分類、語音識別、知識問答、人機對弈、無人駕駛等人工智慧技術實現了從「不能用、不好用」到「可以用」的技術突破,迎來爆發式增長的新高潮。

Ⅱ 人工智慧有著怎樣的歷史

人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。

人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。[1]2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。

人工智慧的傳說可以追溯到古埃及,但隨著1941年以來電子計算機的發展,技術已最終可以創造出機器智能,「人工智慧」(ARTIFICIAL INTELLIGENCE)一詞最初是在1956年DARTMOUTH學會上提出的,從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展,在它還不長的歷史中,人工智慧的發展比預想的要慢,但一直在前進,從40年前出現至今,已經出現了許多AI程序,並且它們也影響到了其它 技術的發展。

計算機時代

1941年的一項發明使信息存儲和處理的各個方面都發生了革命.這項同時在美國和德國出現的 發明就是電子計算機.第一台計算機要佔用幾間裝空調的大房間,對程序員來說是場噩夢:僅僅為運行一 個程序就要設置成千的線路.1949年改進後的能存儲程序的計算機使得輸入程序變得簡單些,而且計算機 理論的發展產生了計算機科學,並最終促使了人工智慧的出現.計算機這個用電子方式處理數據的發明,為人工智慧的可能實現提供了一種媒介.

雖然計算機為AI提供了必要的技術基礎,但直到50年代早期人們才注意到人類智能與機器之間 的聯系. NORBERT WIENER是最早研究反饋理論的美國人之一.最熟悉的反饋控制的例子是自動調溫器.它 將收集到的房間溫度與希望的溫度比較,並做出反應將加熱器開大或關小,從而控制環境溫度.這項對反饋 迴路的研究重要性在於:WIENER從理論上指出,所有的智能活動都是反饋機制的結果.而反饋機制是有可 能用機器模擬的.這項發現對早期AI的發展影響很大.

1955年末,NEWELL和SIMON做了一個名為"邏輯專家"(LOGIC THEORIST)的程序.這個程序被許多人 認為是第一個AI程序.它將每個問題都表示成一個樹形模型,然後選擇最可能得到正確結論的那一枝來求解 問題."邏輯專家"對公眾和AI研究領域產生的影響使它成為AI發展中一個重要的里程碑.1956年,被認為是 人工智慧之父的JOHN MCCARTHY組織了一次學會,將許多對機器智能感興趣的專家學者聚集在一起進行了一 個月的討論.他請他們到 VERMONT參加 " DARTMOUTH人工智慧夏季研究會".從那時起,這個領域被命名為 "人工智慧".雖然 DARTMOUTH學會不是非常成功,但它確實集中了AI的創立者們,並為以後的AI研究奠定了基礎.

DARTMOUTH會議後的7年中,AI研究開始快速發展.雖然這個領域還沒明確定義,會議中的一些思想 已被重新考慮和使用了. CARNEGIE MELLON大學和MIT開始組建AI研究中心.研究面臨新的挑戰:下一步需 要建立能夠更有效解決問題的系統,例如在"邏輯專家"中減少搜索;還有就是建立可以自我學習的系統.

1957年一個新程序,"通用解題機"(GPS)的第一個版本進行了測試.這個程序是由製作"邏輯專家" 的同一個組開發的.GPS擴展了WIENER的反饋原理,可以解決很多常識問題.兩年以後,IBM成立了一個AI研 究組.HERBERT GELERNETER花3年時間製作了一個解幾何定理的程序.

當越來越多的程序涌現時,MCCARTHY正忙於一個AI史上的突破.1958年MCCARTHY宣布了他的新成 果:LISP語言. LISP到今天還在用."LISP"的意思是"表處理"(LIST PROCESSING),它很快就為大多數AI開發者採納.

1963年MIT從美國政府得到一筆220萬美元的資助,用於研究機器輔助識別.這筆資助來自國防部 高級研究計劃署(ARPA),已保證美國在技術進步上領先於蘇聯.這個計劃吸引了來自全世界的計算機科學家,加快了AI研究的發展步伐.

競賽

LOEBNER(人工智慧類)

以人類的智慧創造出堪與人類大腦相平行的機器腦(人工智慧),對人類來說是一個極具誘惑的領域,人類為了實現這一夢想也已經奮鬥了很多個年頭了。而從一個語言研究者的角度來看,要讓機器與人之間自由交流那是相當困難的,甚至可以說可能會是一個永無答案的問題。人類的語言,人類的智能是如此的復雜,以至於我們的研究還並未觸及其導向本質的外延部分的邊沿。

大量程序

以後幾年出現了大量程序.其中一個叫"SHRDLU"."SHRDLU"是"微型世界"項目的一部分,包括 在微型世界(例如只有有限數量的幾何形體)中的研究與編程.在MIT由MARVIN MINSKY領導的研究人員發現,面對小規模的對象,計算機程序可以解決空間和邏輯問題.其它如在60年代末出現的"STUDENT"可以解決代數 問題,"SIR"可以理解簡單的英語句子.這些程序的結果對處理語言理解和邏輯有所幫助.

70年代另一個進展是專家系統.專家系統可以預測在一定條件下某種解的概率.由於當時計算機已 有巨大容量,專家系統有可能從數據中得出規律.專家系統的市場應用很廣.十年間,專家系統被用於股市預 測,幫助醫生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因為專家系統存儲規律和信息的能力而成為可能.

70年代許多新方法被用於AI開發,如MINSKY的構造理論.另外DAVID MARR提出了機器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什麼.同時期另一項成果是PROLOGE語言,於1972年提出. 80年代期間,AI前進更為迅速,並更多地進入商業領域.1986年,美國AI相關軟硬體銷售高達4.25億 美元.專家系統因其效用尤受需求.象數字電氣公司這樣的公司用XCON專家系統為VAX大型機編程.杜邦,通用 汽車公司和波音公司也大量依賴專家系統.為滿足計算機專家的需要,一些生產專家系統輔助製作軟體的公 司,如TEKNOWLEDGE和INTELLICORP成立了。為了查找和改正現有專家系統中的錯誤,又有另外一些專家系統被設計出來.

日常生活

人們開始感受到計算機和人工智慧技術的影響.計算機技術不再只屬於實驗室中的一小群研究人員.個人電腦和眾多技術雜志使計算機技術展現在人們面前.有了像美國人工智慧協會這樣的基金會.因為AI開發 的需要,還出現了一陣研究人員進入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內部的AI開發組上.

其它AI領域也在80年代進入市場.其中一項就是機器視覺. MINSKY和MARR的成果如今用到了生產線上的相機和計算機中,進行質量控制.盡管還很簡陋,這些系統已能夠通過黑白區別分辨出物件形狀的不同.到1985年美國有一百多個公司生產機器視覺系統,銷售額共達8千萬美元.

但80年代對AI工業來說也不全是好年景.86-87年對AI系統的需求下降,業界損失了近5億美元.象 TEKNOWLEDGE和INTELLICORP兩家共損失超過6百萬美元,大約占利潤的三分之一巨大的損失迫使許多研究領 導者削減經費.另一個令人失望的是國防部高級研究計劃署支持的所謂"智能卡車".這個項目目的是研製一種能完成許多戰地任務的機器人。由於項目缺陷和成功無望,PENTAGON停止了項目的經費.

盡管經歷了這些受挫的事件,AI仍在慢慢恢復發展.新的技術在日本被開發出來,如在美國首創的模糊邏輯,它可以從不確定的

人工智慧機器人(2張)

條件作出決策;還有神經網路,被視為實現人工智慧的可能途徑.總之,80年代AI被引入了市場,並顯示出實用價值.可以確信,它將是通向21世紀之匙. 人工智慧技術接受檢驗 在"沙漠風暴"行動中軍方的智能設備經受了戰爭的檢驗.人工智慧技術被用於導彈系統和預警顯示以 及其它先進武器.AI技術也進入了家庭.智能電腦的增加吸引了公眾興趣;一些面向蘋果機和IBM兼容機的應用 軟體例如語音和文字識別已可買到;使用模糊邏輯,AI技術簡化了攝像設備.對人工智慧相關技術更大的需求促 使新的進步不斷出現.人工智慧已經並且將繼續不可避免地改變我們的生活。

Ⅲ 人工智慧是什麼

AI(Artificial Intelligence,人工智慧) 。「人工智慧」一詞最初是在1956 年Dartmouth學會上提出的。從那以後,研究者們發展了眾多理論和原理,人工智慧的概念也隨之擴展。人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。例如繁重的科學和工程計算本來是要人腦來承擔的, 現在計算機不但能完成這種計算, 而且能夠比人腦做得更快、更准確, 因之當代人已不再把這種計算看作是「需要人類智能才能完成的復雜任務」, 可見復雜工作的定義是隨著時代的發展和技術的進步而變化的, 人工智慧這門科學的具體目標也自然隨著時代的變化而發展。它一方面不斷獲得新的進展, 一方面又轉向更有意義、更加困難的目標。目前能夠用來研究人工智慧的主要物質手段以及能夠實現人工智慧技術的機器就是計算機, 人工智慧的發展歷史是和計算機科學與技術的發展史聯系在一起的。除了計算機科學以外, 人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。

人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。

知識表示是人工智慧的基本問題之一,推理和搜索都與表示方法密切相關。常用的知識表示方法有:邏輯表示法、產生式表示法、語義網路表示法和框架表示法等。

常識,自然為人們所關注,已提出多種方法,如非單調推理、定性推理就是從不同角度來表達常識和處理常識的。

問題求解中的自動推理是知識的使用過程,由於有多種知識表示方法,相應地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎。結構化表示下的繼承性能推理是非演繹性的。由於知識處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機制推理、類比推理、基於示例的推理、反繹推理和受限推理等。

搜索是人工智慧的一種問題求解方法,搜索策略決定著問題求解的一個推理步驟中知識被使用的優先關系。可分為無信息導引的盲目搜索和利用經驗知識導引的啟發式搜索。啟發式知識常由啟發式函數來表示,啟發式知識利用得越充分,求解問題的搜索空間就越小。典型的啟發式搜索方法有A*、AO*演算法等。近幾年搜索方法研究開始注意那些具有百萬節點的超大規模的搜索問題。

機器學習是人工智慧的另一重要課題。機器學習是指在一定的知識表示意義下獲取新知識的過程,按照學習機制的不同,主要有歸納學習、分析學習、連接機制學習和遺傳學習等。

知識處理系統主要由知識庫和推理機組成。知識庫存儲系統所需要的知識,當知識量較大而又有多種表示方法時,知識的合理組織與管理是重要的。推理機在問題求解時,規定使用知識的基本方法和策略,推理過程中為記錄結果或通信需設資料庫或採用黑板機制。如果在知識庫中存儲的是某一領域(如醫療診斷)的專家知識,則這樣的知識系統稱為專家系統。為適應復雜問題的求解需要,單一的專家系統向多主體的分布式人工智慧系統發展,這時知識共享、主體間的協作、矛盾的出現和處理將是研究的關鍵問題。

一、人工智慧的歷史

人工智慧(AI)是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧的目的就是讓計算機這台機器能夠象人一樣思考。這可是不是一個容易的事情。 如果希望做出一台能夠思考的機器,那就必須知識什麼是思考,更進一步講就是什麼是智慧,它的表現是什麼,你可以說科學

家有智慧,可你決不會說一個路人什麼也不會,沒有知識,你同樣不敢說一個孩子沒有智慧,可對於機器你就不敢說它有智慧了吧,那麼智慧是如何分辨的呢?我們說的話,我們做的事情,我們的想法如同泉水一樣從大腦中流出,如此自然,可是機器能夠嗎,那麼什麼樣的機器才是智慧的呢?科學家已經作出了汽車,火車,飛機,收音機等等,它們模仿我們身體器官的功能,但是能不能模仿人類大腦的功能呢?到目前為止,我們也僅僅知道這個裝在我們天靈蓋裡面的東西是由數十億個神經細胞組成的器官,我們對這個東西知之甚少,模仿它或許是天下最困難的事情了。

在定義智慧時,英國科學家圖靈做出了貢獻,如果一台機器能夠通過稱之為圖靈實驗的實驗,那它就是智慧的,圖靈實驗的本質 就是讓人在不看外型的情況下不能區別是機器的行為還是人的行為時,這個機器就是智慧的。不要以為圖靈只做出這一點貢獻就會名垂表史,如果你是學計算機的就會知道,對於計算機人士而言,獲得圖靈獎就等於物理學家獲得諾貝爾獎一樣,圖靈在理論上奠定了計算機產生的基礎,沒有他的傑出貢獻世界上根本不可能有這個東西,更不用說什麼網路了。

科學家早在計算機出現之前就已經希望能夠製造出可能模擬人類思維的機器了,在這方面我希望提到另外一個傑出的數學家,哲學家布爾,通過對人類思維進行數學化精確地刻畫,他和其它傑出的科學家一起奠定了智慧機器的思維結構與方法,今天我們的計算機內使用的邏輯基礎正是他所創立的。

我想任何學過計算機的人對布爾一定不會陌生,我們所學的布爾代數,就是由它開創的。當計算機出現後,人類開始真正有了一個可以模擬人類思維的工具了,在以後的歲月中,無數科學家為這個目標努力著,現在人工智慧已經不再是幾個科學家的專利了,全世界幾乎所有大學的計算機系都有人在研究這門學科,學習計算機的大學生也必須學習這樣一門課程,在大家不懈的努力下,現在計算機似乎已經變得十分聰明了,剛剛結束的國際象棋大賽中,計算機把人給勝了,這是人們都知道的,大家或許不會注意到,在一些地方計算機幫助人進行其它原來只屬於人類的工作,計算機以它的高速和准確為人類發揮著它的作用。人工智慧始終是計算機科學的前沿學科,計算機編程語言和其它計算機軟體都因為有了人工智慧的進展而得以存在。

現在人類已經把計算機的計算能力提高到了前所未有的地步,而人工智慧也在下世紀領導計算機發展的潮頭,現在人工智慧的發展因為受到理論上的限制不是很明顯,但它必將象今天的網路一樣深遠地影響我們的生活。

在世界各地對人工智慧的研究很早就開始了,但對人工智慧的真正實現要從計算機的誕生開始算起,這時人類才有可能以機器的實現人類的智能。AI這個英文單詞最早是在1956年的一次會議上提出的,在此以後,因此一些科學的努力它得以發展。人工智慧的進展並不象我們期待的那樣迅速,因為人工智慧的基本理論還不完整,我們還不能從本質上解釋我們的大腦為什麼能夠思考,這種思考來自於什麼,這種思考為什麼得以產生等一系列問題。但經過這幾十年的發展,人工智慧正在以它巨大的力量影響著人們的生活。

讓我們順著人工智慧的發展來回顧一下計算機的發展,在1941年由美國和德國兩國共同研製的第一台計算機誕生了,從此以後人類存儲和處理信息的方法開始發生革命性的變化。第一台計算機的體型可不算太好,它比較胖,還比較嬌氣,需要工作在有空調的房間里,如果希望它處理什麼事情,需要大家把線路重新接一次,這可不是一件省力氣的活兒,把成千上萬的線重新焊一下我想現在的程序員已經是生活在天堂中了。

終於在1949發明了可以存儲程序的計算機,這樣,編程程序總算可以不用焊了,好多了。因為編程變得十分簡單,計算機理論的發展終於導致了人工智慧理論的產生。人們總算可以找到一個存儲信息和自動處理信息的方法了。

雖然現在看來這種新機器已經可以實現部分人類的智力,但是直到50年代人們才把人類智力和這種新機器聯系起來。我們注意到旁邊這位大肚子的老先生了,他在反饋理論上的研究最終讓他提出了一個論斷,所有

人類智力的結果都是一種反饋的結果,通過不斷地將結果反饋給機體而產生的動作,進而產生了智能。我們家的抽水馬桶就是一個十分好的例子,水之所以不會常流不斷,正是因為有一個裝置在檢測水位的變化,如果水太多了,就把水管給關了,這就實現了反饋,是一種負反饋。如果連我們廁所里的裝置都可以實現反饋了,那我們應該可以用一種機器實現反饋,進而實現人類智力的機器形式重現。這種想法對於人工智慧早期的有著重大的影響。

在1955的時候,香農與人一起開發了The Logic TheoriST程序,它是一種採用樹形結構的程序,在程序運行時,它在樹中搜索,尋找與可能答案最接近的樹的分枝進行探索,以得到正確的答案。這個程序在人工智慧的歷史上可以說是有重要地位的,它在學術上和社會上帶來的巨大的影響,以至於我們現在所採用的方法思想方法有許多還是來自於這個50年代的程序。

1956年,作為人工智慧領域另一位著名科學家的麥卡希(就是右圖的那個人)召集了一次會議來討論人工智慧未來的發展方向。從那時起,人工智慧的名字才正式確立,這次會議在人工智慧歷史上不是巨大的成功,但是這次會議給人工智慧奠基人相互交流的機會,並為未來人工智慧的發展起了鋪墊的作用。在此以後,工人智能的重點開始變為建立實用的能夠自行解決問題的系統,並要求系統有自學習能力。在1957年,香農和另一些人又開發了一個程序稱為General Problem Solver(GPS),它對Wiener的反饋理論有一個擴展,並能夠解決一些比較普遍的問題。別的科學家在努力開發系統時,右圖這位科學家作出了一項重大的貢獻,他創建了表處理語言LISP,直到現在許多人工智慧程序還在使用這種語言,它幾乎成了人工智慧的代名詞,到了今天,LISP仍然在發展。

在1963年,麻省理工學院受到了美國政府和國防部的支持進行人工智慧的研究,美國政府不是為了別的,而是為了在冷戰中保持與蘇聯的均衡,雖然這個目的是帶點火葯味的,但是它的結果卻使人工智慧得到了巨大的發展。其後發展出的許多程序十分引人注目,麻省理工大學開發出了SHRDLU。在這個大發展的60年代,STUDENT系統可以解決代數問題,而SIR系統則開始理解簡單的英文句子了,SIR的出現導致了新學科的出現:自然語言處理。在70年代出現的專家系統成了一個巨大的進步,他頭一次讓人知道計算機可以代替人類專家進行一些工作了,由於計算機硬體性能的提高,人工智慧得以進行一系列重要的活動,如統計分析數據,參與醫療診斷等等,它作為生活的重要方面開始改變人類生活了。在理論方面,70年代也是大發展的一個時期,計算機開始有了簡單的思維和視覺,而不能不提的是在70年代,另一個人工智慧語言Prolog語言誕生了,它和LISP一起幾乎成了人工智慧工作者不可缺少的工具。不要以為人工智慧離我們很遠,它已經在進入我們的生活,模糊控制,決策支持等等方面都有人工智慧的影子。讓計算機這個機器代替人類進行簡單的智力活動,把人類解放用於其它更有益的工作,這是人工智慧的目的,但我想對科學真理的無盡追求才是最終的動力吧。

二、人工智慧的應用領域

1、問題求解。
人工智慧的第一大成就是下棋程序,在下棋程度中應用的某些技術,如向前看幾步,把困難的問題分解成一些較容易的子問題,發展成為搜索和問題歸納這樣的人工智慧基本技術。今天的計算機程序已能夠達到下各種方盤棋和國際象棋的錦標賽水平。但是,尚未解決包括人類棋手具有的但尚不能明確表達的能力。如國際象棋大師們洞察棋局的能力。另一個問題是涉及問題的原概念,在人工智慧中叫問題表示的選擇,人們常能找到某種思考問題的方法,從而使求解變易而解決該問題。到目前為止,人工智慧程序已能知道如何考慮它們要解決的問題,即搜索解答空間,尋找較優解答。

2、邏輯推理與定理證明。
邏輯推理是人工智慧研究中最持久的領域之一,其中特別重要的是要找到一些方法,只把注意力集中在一個大型的資料庫中的有關事實上,留意可信的證明,並在出現新信息時適時修正這些證明。對數學中臆測的題。定理尋找一個證明或反證,不僅需要有根據假設進行演繹的能力,而且許多非形式的工作,包括醫療診斷和信息檢索都可以和定理證明問題一樣加以形式化,因此,在人工智慧方法的研究中定理證明是一個極其重要的論題。

3、自然語言處理。
自然語言的處理是人工智慧技術應用於實際領域的典型範例,經過多年艱苦努力,這一領域已獲得了大量令人注目的成果。目前該領域的主要課題是:計算機系統如何以主題和對話情境為基礎,注重大量的常識——世界知識和期望作用,生成和理解自然語言。這是一個極其復雜的編碼和解碼問題。

4、智能信息檢索技術。
受"()*+ (*) 技術迅猛發展的影響,信息獲取和精化技術已成為當代計算機科學與技術研究中迫切需要研究的課題,將人工智慧技術應用於這一領域的研究是人工智慧走向廣泛實際應用的契機與突破口。

5、專家系統。
專家系統是目前人工智慧中最活躍、最有成效的一個研究領域,它是一種具有特定領域內大量知識與經驗的程序系統。近年來,在「 專家系統」或「 知識工程」的研究中已出現了成功和有效應用人工智慧技術的趨勢。人類專家由於具有豐富的知識,所以才能達到優異的解決問題的能力。那麼計算機程序如果能體現和應用這些知識,也應該能解決人類專家所解決的問題,而且能幫助人類專家發現推理過程中出現的差錯,現在這一點已被證實。如在礦物勘測、化學分析、規劃和醫學診斷方面,專家系統已經達到了人類專家的水平。成功的例子如:PROSPECTOR系統發現了一個鉬礦沉積,價值超過1億美元。DENDRL系統的性能已超過一般專家的水平,可供數百人在化學結構分析方面的使用。MY CIN系統可以對血液傳染病的診斷治療方案提供咨詢意見。經正式鑒定結果,對患有細菌血液病、腦膜炎方面的診斷和提供治療方案已超過了這方面的專家。

三、人工智慧理論的數學化趨勢越來越突出

在現代科技高速發展的今天,許多科技理論都有賴於數學提供證明,有賴於數學對其的模擬。人工智慧的發展也不例外,如何把人們的思維活動形式化、符號化,使其得以在計算機上實現,就成為人工智慧研究的重要課題。在這方面,邏輯的有關理論、方法、技術起著十分重要的作用,它不僅為人工智慧提供了有力的工具,而且也為知識的推理奠定了理論基礎。人工智慧中用到的邏輯可概括地分為兩大類。一類是經典命題邏輯和一階謂詞邏輯,其特點是任何一個命題的真值或者是「真」,或者是「假」,二者必居其一。這一類問題可以用數學里的經典邏輯理論來解決。世界上事物千差萬別,形形色色,除了確定性的事物或概念外,更廣泛存在的是不確定性的事物或概念。這些不確定的事物是無法用經典邏輯理論來解決的。因此我們需要發展新的數學工具來表示這些問題。目前在人工智慧中對不確定性的事物或概念是通過運用多值邏輯、模糊理論及概率來描述、處理的。多值邏輯、模糊理論及概率雖然都是通過在〔!,"〕上取值來刻畫不確定性,但三者之間又存在著很大區別。多值邏輯是通過在真(")與假(!)之間增加了若干中介真值來描述事物為真的程度的,但它把各個中介真值看作是彼此完全分立的,界限分明。而模糊理論認為不同的中介真值之間沒有明確的界限,表現了不同中介值相互貫通、滲透的特徵,從而更好地反映了不確定性的本質。概率用來度量事件發生的可能性,而事件本身的含義是明確的,只是在一定的條件下它可能不發生,它與模糊理論是從兩個不同的角度來描述不確定性的,因而有人稱模糊理論描述了事物內在的不確定性,而概率描述的是事物外在的不確定性。由上可以看出,數學使得人工智慧能很好的模擬人類智能,大大推動了人工智慧的向前發展。現在人工智慧中還有一些問題用現在的數學很難表示出來,相信在數學知識不斷發展之後,這些問題能很快得到解決。

五、人工智慧的發展現狀及前景

目前絕大多數人工智慧系統都是建立在物理符號系統假設之上的。在尚未出現能與物理符號系統假設相抗衡的新的人工智慧理論之前,無論從設計原理還是從已取得的實驗結果來看,SOAr 在探討智能行為的一般特徵和人類認知的具體特徵的艱難征途上都取得了有特色的進展或成就,處在人工智慧研究的前沿。
80 年代,以Newell A 為代表的研究學者總結了專家系統的成功經驗,吸收了認知科學研究的最新成果,提出了作為通用智能基礎的體系結構Soar。目前的Soar 已經顯示出強大的問題求解能力。在Soar中已實現了30 多種搜索方法,實現了若干知識密集型任務(專家系統) ,如RI 等。rOOks 提出了人工智慧的一種新的途徑。它認為無需概念或者說無需符號表示,智能系統的能力可以逐步進化。在它的研究中突出4 個概念:(1) 所處的境遇 機器人不涉及抽象的描述,而是處在直接影響系統的行為的境地。(2) 具體化 機器人有軀干,有直接來自周圍世界的經驗,他們的感官起作用後立即會有反饋。(3) 智能 智能的來源不僅僅是限於計算裝置,也是由於與周圍進行交互的動態決定。(4) 浮現 從系統與周圍世界的交互以及有時候系統的部件間的交互浮現出智能。

五、結語

人工智慧不單單需要邏輯思維與模仿,科學家們對人類大腦和神經系統研究得越多,他們越加肯定:情感是智能的一部分,而不是與智能相分離的。因此人工智慧領域的下一個突破可能不僅在於賦予計算機更多的邏輯推理能力,而且還要賦予它情感能力。許多科學家斷言,機器的智能會迅速超過阿爾伯特·愛因斯坦和霍金的智能之和。到下世紀中葉,人類生命的本質也會發生變化。神經植入將增強人類的知識和思考能力,並且開始向一種復合的人/機關系過渡,這種復合關系將使人類逐漸停止對生物機體的需求。大量非常微小的機器人將在大腦的感覺區里占據一席之地,並且創造出真假難辨的虛擬現實的模擬效果。

人工智慧的實現,不是天方夜譚。雖然會很辛苦,但是沒有人規定只有人類可以思考。就像是生命的不同表現形式,動物,植物,微生物,是不同的生命的形式。人類可以以未知的方式思考,計算機也可以以另一種(並非一定要和人相同的)形式思考。

著名軟體公司ADOBE的專業制圖軟體Illustrator 的一種文件格式!

AI ( Artificial Intelligence ):人工智慧。就是指計算機模模擬實世界的行為方式與人類思維與游戲的方式的運算能力。那是一整套極為復雜的運算系統與運算規則。

=============================================================
此外,AI還代表ALLEN IVERSON(阿倫·艾佛森),他生於美國,是全世界最好的籃球聯盟——「NBA」96黃金一代的代表人物,是NBA有史以來最好的後衛之一,他以183cm身高在眾多魁梧的球員中靈動跳躍,獨領風騷。他先後摘取過NBA得分王、搶斷王等稱號,還在2001年帶領76人隊闖進NBA總決賽。他以特立獨行的風格和滿身的紋身成為全球籃球青少年瘋狂追捧的偶像。

————————————————————————————————————
歌手姓名: AI 英文名: AI
唱片公司: 環球唱片(Universal Music)
國 籍: 日本 語 言: 日語
興 趣:
個人經歷: *東瀛首席嘻哈女力、R&B歌姬 她是張力十足的嘻哈女力,也是柔情似水的R&B美聲歌姬,AI,22歲的她在時尚一派與安室奈美惠合唱『Uh、Uh…』,並在珍娜傑克森的音樂錄影帶中展現絕贊舞技,除了過人的歌舞才華之外,詞曲創作力更是傲視東瀛R&B舞台,在嘻哈音樂大廠Def Jam Japan簽下一紙合約之後,發行『ORIGINAL A.I./原創A.I.』專輯立刻贏得媒體一致肯定,除了拿下SPACE SHOWER TV的R& B音樂錄影帶大獎外,更代表日本參加2004年MTV BUZZ ASIA演唱會,一舉打進亞洲市場。
以過人演唱的天賦而獲得日本「新時代音樂代言人」殊榮的HIP HOP小天後AI,近日參加了在台北舉行的「台北流行音樂節」,同行的日本歌手還有一青窈以及藤木直人。在這場盛大的音樂節上,AI以她新穎而獨特的演唱方式以及活力四射的表演令在場6萬歌迷為之傾倒。 AI有著四分之一的義大利血統,骨子裡就透出一種浪漫和前衛的氣息。而她又是在美國長大,接觸的音樂也很多元化。由於AI的母親非常喜歡音樂,所以從小她就深受各種類型音樂的熏陶。在15歲時,AI還曾經參加過珍妮·傑克遜的MTV《GO DEEP》的錄制。不過,在日本出道時卻並不順利,因為與工作人員在音樂理解上的不同,當大家對自己的音樂反映很冷淡時,她就很想去敲牆壁,可見其可愛之處。不過,AI並沒有被現實所擊敗,仍然堅持走HIP HOP這條音樂路線,使得她的音樂風格也帶給人們一種全新的感受。在今年日本最權威的公信榜票選中,AI從眾多新晉女性中脫穎而出,成為新一代音樂天後接班人。對此,AI自己也非常滿意,她表示自己想要成為一個很有朝氣的歌手,給更多的人帶來幸福感。這次的台北流行音樂節,AI也是做足了准備。除了帶上偕同一起演出的DJ、化妝師、造型師、人聲樂手AFURA以外,連日本報知新聞、電通、朝日電視台等日本媒體的高層人士以及自己經濟公司的社長也都一同前來,浩浩盪盪23人的訪華隊伍令AI頗有面子。而赴台之前,AI也時常向安室奈美惠等曾經去過台灣的人請教,以進一步了解台灣。聽說台北美食多多,AI興奮地說想要常常小籠包、路邊攤,所以這次的台灣之行,除了要參加音樂節和拍攝特輯,還順帶要向日本觀眾介紹台灣美食,這也使AI欣喜不已。 台灣表演大獲成功後,AI也表示自己想要更了解華人音樂,有機會的話,也希望能夠像平井堅、安室奈美惠等日本歌手一樣,可以在台灣等地開演唱會,和台灣的歌手同台獻藝。其實AI出國獻藝已經不是第一次,在幾個月前的韓國漢城MTV BUZZ ASIA演唱會中,AI也曾把歌詞改為韓文,而這次為了更貼近觀眾,AI也把歌詞改成了中文來演唱。為期四天的台灣之行,AI讓更多的人領略了她的「小天後」風采,也順便為自己今秋將要展開的全國巡演造勢。

Ⅳ 關於人工智慧

「人工智慧」(Artificial Intelligence)簡稱AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧研究如何用計算機去模擬、延伸和擴展人的智能;如何把計算機用得更聰明;如何設計和建造具有高智能水平的計算機應用系統;如何設計和製造更聰明的計算機以及智能水平更高的智能計算機等。

人工智慧是計算機科學的一個分支,人工智慧是計算機科學技術的前沿科技領域。

人工智慧與計算機軟體有密切的關系。一方面,各種人工智慧應用系統都要用計算機軟體去實現,另一方面,許多聰明的計算機軟體也應用了人工智慧的理論方法和技術。例如,專家系統軟體,機器博弈軟體等。但是,人工智慧不等於軟體,除了軟體以外,還有硬體及其他自動化和通信設備。
人工智慧雖然是計算機科學的一個分支,但它的研究卻不僅涉及到計算機科學,而且還涉及到腦科學、神經生理學、心理學、語言學、邏輯學、認知(思維)科學、行為科學和數學以及資訊理論、控制論和系統論等許多學科領域。因此,人工智慧實際上是一門綜合性的交叉學科和邊緣學科。
人工智慧主要研究用人工的方法和技術,模仿、延伸和擴展人的智能,實現機器智能。有人把人工智慧分成兩大類:一類是符號智能,一類是計算智能。符號智能是以知識為基礎,通過推理進行問題求解。也即所謂的傳統人工智慧。計算智能是以數據為基礎,通過訓練建立聯系,進行問題求解。人工神經網路、遺傳演算法、模糊系統、進化程序設計、人工生命等都可以包括在計算智能。
傳統人工智慧主要運用知識進行問題求解。從實用觀點看,人工智慧是一門知識工程學:以知識為對象,研究知識的表示方法、知識的運用和知識獲取。

人工智慧從1956年提出以來取得了很大的進展和成功。1976年Newell 和Simon提出了物理符號系統假設,認為物理符號系統是表現智能行為必要和充分的條件。這樣,可以把任何信息加工系統看成是一個具體的物理系統,如人的神經系統、計算機的構造系統等。80年代Newell 等又致力於SOAR系統的研究。SOAR系統是以知識塊(Chunking)理論為基礎,利用基於規則的記憶,獲取搜索控制知識和操作符,實現通用問題求解。Minsky從心理學的研究出發,認為人們在他們日常的認識活動中,使用了大批從以前的經驗中獲取並經過整理的知識。該知識是以一種類似框架的結構記存在人腦中。因此,在70年代他提出了框架知識表示方法。到80年代,Minsky認為人的智能,根本不存在統一的理論。1985年,他發表了一本著名的書《Society of Mind(思維社會)》。書中指出思維社會是由大量具有某種思維能力的單元組成的復雜社會。以McCarthy和Nilsson等為代表,主張用邏輯來研究人工智慧,即用形式化的方法描述客觀世界。邏輯學派在人工智慧研究中,強調的是概念化知識表示、模型論語義、演繹推理等。 McCarthy主張任何事物都可以用統一的邏輯框架來表示,在常識推理中以非單調邏輯為中心。傳統的人工智慧研究思路是「自上而下」式的,它的目標是讓機器模仿人,認為人腦的思維活動可以通過一些公式和規則來定義,因此希望通過把人類的思維方式翻譯成程序語言輸入機器,來使機器有朝一日產生像人類一樣的思維能力。這一理論指導了早期人工智慧的研究。

近年來神經生理學和腦科學的研究成果表明,腦的感知部分,包括視覺、聽覺、運動等腦皮層區不僅具有輸入/輸出通道的功能,而且具有直接參與思維的功能。智能不僅是運用知識,通過推理解決問題,智能也處於感知通道。

1990年史忠植提出了人類思維的層次模型,表明人類思維有感知思維、形象思維、抽象思維,並構成層次關系。感知思維是簡單的思維形態,它通過人的眼、耳、鼻、舌、身感知器官產生表象,形成初級的思維。感知思維中知覺的表達是關鍵。形象思維主要是用典型化的方法進行概括,並用形象材料來思維,可以高度並行處理。抽象思維以物理符號系統為理論基礎,用語言表述抽象的概念。由於注意的作用,使其處理基本上是串列的.

Ⅳ 關於人工智慧的問題

應用人工智慧系統只是AGI的有限版本。

盡管許多人認為,人工智慧的技術水平仍然遠遠落後於人類的智力。人工智慧,即AGI,一直是所有人工智慧科學家的研發動力,從圖靈到今天。在某種程度上類似於煉金術,對AGI復制和超越人類智能的永恆追求已經導致了許多技術的應用和科學突破。AGI幫助我們理解了人類和自然智慧的各個方面,因此,我們建立了有效的演算法,這些演算法受到我們的追求更加高效計算能力和學習模型的啟發。

然而,當涉及到人工智慧的實際應用時,人工智慧實踐者並不一定局限於人類決策、學習和解決問題的純模型。相反,為了解決問題和實現可接受的性能,AI實踐者通常會做構建實際系統所需的事情。例如,深度學習系統的演算法突破的核心是一種叫做反向傳播的技術。然而,這種技術並不是大腦建立世界模型的方式。這就引出了下一個誤解:一刀切的人工智慧解決方案。

AI為更美好的未來鋪平了道路。盡管人們對人工智慧有著普遍的誤解,但正確的假設是,人工智慧將繼續存在,而且確實是通向未來的窗口。AI還有很長的路要走,它在將來會被用來解決所有的問題,並被工業化廣泛的使用。人工智慧的下一個重大步驟是使其具有創造性和適應性,同時,強大到足以超過人類建立模型的能力。

Ⅵ 人工智慧發展史

歷史 突飛猛進

1950年阿蘭·圖靈出版《計算機與智能》。

1956年約翰·麥卡錫在美國達特矛斯電腦大會上「創造」「人工智慧 」一詞。

1956年美國卡內基·梅隆大學展示世界上第一個人工智慧軟體的工作。

1958年約翰·麥卡錫在麻省理工學院發明Lisp語言———一種A.I.語言。

1964年麻省理工學院的丹尼·巴洛向世人展示,電腦能掌握足夠的自然語言從而解決了開發計算機代數詞彙程序的難題。

1965年約瑟夫·魏岑堡建造了ELIZA———一種互動程序,它能以英語與人就任意話題展開對話。

1969年斯坦福大學研製出Shakey————一種集運動、理解和解決問題能力於一身的機器人。

1979年第一台電腦控制的自動行走器「斯坦福車」誕生。

1983年世界第一家批量生產統一規格電腦的公司「思考機器」誕生。

1985年哈羅德·科岑編寫的繪圖軟體Aaron在A.I.大會亮相。

90年代A.I.技術的發展在各個領域均展示長足發展————學習、教學、案件推理、策劃、自然環境認識及方位識別、翻譯,乃至游戲軟體等領域都瞄準了A.I.的研發。

1997年IBM(國際商用機械公司)製造的電腦「深藍」擊敗了國際象棋冠軍加里·卡斯帕羅夫。

90年代末以A.I.技術為基礎的網路信息搜索軟體已是國際互聯網的基本構件。

2000年互動機械寵物面世。麻省理工學院推出了會做數十種面部表情的機器人Kisinel。

現在 流行擋不住

商業上的成功,成為實驗室研究工作的催化劑。A.I.的邊界正一步步向人類智慧逼進。

全球的高科技實驗室不約而同盯上了A.I.大腦,這其中響當當的名字包括卡內基·梅隆大學,IBM和日本的本田汽車公司。

在比利時,Starlab(星實驗室)正開發種能取代真貓大腦工作的人工大腦。據「人工大腦網站」報道,它將擁有約7500個人工腦神經細胞。它將能自如地操控貓咪行走,玩耍毛線球。據估計它將在2002年完成。

軟體在將復雜決策程序化整為零方面取得突破。像外貌識別等看似簡單的人類能力實際涉及廣泛、復雜的認知和判斷步驟。今天的電腦軟體越來越精於模仿人類最精細的思維。而計算機硬體在追趕人腦能力方面亦不遺餘力。

目前世界上最快的超級電腦————位於美國加利福利亞州勞倫斯·立弗摩爾國家實驗室的IBM制「ASCI白色」已經是有人腦0·1%的運算能力。

IBM正在研製的「藍色牛仔」(BlueJean)的每秒運算能力估計將與人腦相當。IBM研發部主管保羅·霍恩說BlueJean將在4年後開始運行。

斯坦福大學A.I.領域的首席專家埃里克·霍維茲及其許多同行相信,A.I.技術迎來突破發展的日子近在眼前,那時,A.I.將細分並派生出跨越出廣泛領域的學科。

未來 聰明過人?

關於A.I.人們最迫切希望知道的問題是,它真能和人一般聰明嗎?許多科學家相信,這只是個時間上的問題。A.I.軟體設計師庫爾茲維爾認為遲至2020年A.I.即可聰明過人。IBM的霍恩估計比較保守,他認為A.I.趕上人還需要40—50年時間。AT&T的斯通則說他的目標是在2050前組建一隻能挑戰曼聯的A.I.足球隊。他這不是開玩笑。

在許多方面,A.I.大腦比人類更有優勢。人腦的學習吸收新知識的過程非常慢。要說一口流利的英語至少得半年或兩三年時間(吹牛廣告中的例子除外)。而要讓A.I.學會講法語,只需為它裝上一個說法語軟體,數秒之間一個A.I.法語專家便誕生了。

另一個更難解答的問題:A.I.是否能擁有情感。目前沒有人有把握回答這個問題。

於是剩下一個最可怕的問題:A.I.機器人能變得比人類更聰明,並反戈一擊與人類為敵?庫爾茲維爾、技術學家比爾·喬伊認為這並非不可能。霍恩在這個問題上拿不太穩。

霍恩認為雖然電腦的粗略運算能力可超過人類,但它不可能具備人類所有精細的特徵,因為人類對自己的大腦擁有的許多微妙能力並不了解,更無從仿模相應軟體。

庫爾維茲的看法比較樂觀,他認為人類在開發超級A.I.的同時,在對它們的引導和管理方面也將相應提高,因此將永遠走在前面,掌握控制權。

閱讀全文

與人工智慧發展有很長的歷史其中相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296