導航:首頁 > 文化發展 > 汽車防搶死系統的發展歷史

汽車防搶死系統的發展歷史

發布時間:2021-03-04 18:53:16

Ⅰ 汽車防碰撞系統發展趨勢

汽車防撞系統發展趨勢將從被動防撞減少傷害逐步向主動避撞減少事故方向回發展。
現在的被動防答撞主要是靠車體結構的耐撞性,約束系統如座椅安全帶等因素來降低事故發生後成員所受到的傷害;而已經逐步運用到車輛上的主動安全系統將是未來減少事故的主要手段,主要包含ESP(電子穩定系統,基本已普及),ACC(自適應巡航系統,部分高檔車裝備),LDW(偏道預警系統,主要用於商用車,未普及),夜視系統等電子設備。這些設備的裝配使得車輛能夠智能的對車輛或駕駛員進行干預,以降低事故的發生率。
手打,希望對你有幫助。

Ⅱ 求汽車防撞系統的發展歷程,以及季候發展!!!

最近聽說一個泰遠汽車防撞器,不知道和這個有關系沒,聽銷售人員說的好像挺厲害。

Ⅲ 汽車防暴死系統是什麼

防抱死系統抄
原指汽車內置襲的緊急應對保護
措施ABS即防抱死制動系統,是Anti
—lock—BrakingSystem的縮寫。司機們在駕車時都有體會,在濕滑路面、沙石路面或者高速過彎時,剎車絕對不能一腳踩死,而應分步剎車,一踩一松,否則,車輪容易發生抱死不轉動的情況,前輪抱死會引起汽車失去轉彎能力,後輪抱死容易發生甩尾事故等等。安裝ABS就是為解決剎車時車輪抱死這個問題,其工作原理也像上面所說的一踩一松,不過,ABS的工作頻率要比人[/size]的操控快得多。裝有ABS的汽車,能有效控制車輪保持在

Ⅳ 汽車的制動系統的歷史,大蝦請進

從別的地方轉載的 希望對你有幫助

最原始的制動控制只是駕駛員操縱一組簡單的機械裝置向制動器施加作用力,這時的車輛的質量比較小,速度比較低,機械制動雖已滿足車輛制動的需要,但隨著汽車自質量的增加,助力裝置對機械制動器來說已顯得十分必要。這時,開始出現真空助力裝置。1932年生產的質量為2860kg的凱迪拉克V16車四輪採用直徑419.1mm的鼓式制動器,並有制動踏板控制的真空助力裝置。林肯公司也於1932年推出V12轎車,該車採用通過四根軟索控制真空加力器的鼓式制動器。
隨著科學技術的發展及汽車工業的發展,尤其是軍用車輛及軍用技術的發展,車輛制動有了新的突破,液壓制動是繼機械制動後的又一重大革新。DuesenbergEight車率先使用了轎車液壓制動器。克萊斯勒的四輪液壓制動器於1924年問世。通用和福特分別於1934年和1939年採用了液壓制動技術。到20世紀50年代,液壓助力制動器才成為現實。

20世紀80年代後期,隨著電子技術的發展,世界汽車技術領域最顯著的成就就是防抱制動系統(ABS)的實用和推廣。ABS集微電子技術、精密加工技術、液壓控制技術為一體,是機電一體化的高技術產品。它的安裝大大提高了汽車的主動安全性和操縱性。防抱裝置一般包括三部分:感測器、控制器(電子計算機)與壓力調節器。感測器接受運動參數,如車輪角速度、角加速度、車速等傳送給控制裝置,控制裝置進行計算並與規定的數值進行比較後,給壓力調節器發出指令。

1936年,博世公司申請一項電液控制的ABS裝置專利促進了防抱制動系統在汽車上的應用。1969年的福特使用了真空助力的ABS制動器;1971年,克萊斯勒車採用了四輪電子控制的ABS裝置。這些早期的ABS裝置性能有限,可靠性不夠理想,且成本高。

1979年,默本茨推出了一種性能可靠、帶有獨立液壓助力器的全數字電子系統控制的ABS制動裝置。1985年美國開發出帶有數字顯示微處理器、復合主缸、液壓制動助力器、電磁閥及執行器「一體化」的ABS防抱裝置。隨著大規模集成電路和超大規模集成電路技術的出現,以及電子信息處理技術的高速發展,ABS以成為性能可靠、成本日趨下降的具有廣泛應用前景的成熟產品。1992年ABS的世界年產量已超過1000萬輛份,世界汽車ABS的裝用率已超過20%。一些國家和地區(如歐洲、日本、美國等)已制定法規,使ABS成為汽車的標准設備。

Ⅳ 汽車懸架系統的歷史

汽車懸架控制系統發展概述

1.前言

懸架依據其可控性可以分為不可控的被動懸架和可控的智能懸架兩大類。在多變環境或性能要求高且影響因素復雜的情況下,被動懸架難以滿足期望的性能要求;而智能懸架能夠對行駛路面、汽車的工況和載荷等狀況進行監測,進而控制懸架本身特性及工作狀態,使汽車的整體行駛性能達到最佳。智能懸架中主動、半主動懸架在近年來得到了迅速發展,較好地解決了安全性和舒適性這一對卜矛盾,將其緩和至相對較低。

2.主動懸架與半主動懸架

主動懸架是一個動力驅動系統,包括測量系統、反饋控制中心、能量源和執行器四個部分。其原理是測量系統通過感測器獲得車輛振動信息,傳遞給控制中心進行處理,進而由控制中心發出指令給能量源產生控制力,再由執行器進行控制,衰減懸架的振動。由於主動懸架結構復雜,成本高,需要很大的能量消耗,它的發展受到了一定的制約,只在少數高級轎車中有所應用。與之相比,半主動懸架具有結構簡單、成本較低、基本不需要消耗能量等優點,而對振動的控制效果在一定程度上卻可以接近主動懸架,遠遠優於被動懸架,因而越來越受到業界的重視,得到了飛速發展。圖1為主動懸架的原理圖,其中F代表力發生器。圖2為一種典型半主動懸架的結構示意圖。

半主動懸架與主動懸架結構相似,只是半主動懸架用可調剛度的彈性元件或是可調阻尼的減振器代替主動懸架的力發生器。圖2的半主動懸架系統中,一個連續可調的阻尼器與一個傳統的普通彈簧並聯,需要假定系統中的阻尼器能夠完全獨立於懸架的相對運動,且能根據力控制信號做出反應。

懸架控制系統的發展概況可以從控制策略、執行機構以及實際應用幾個方面來分析。

3.控制策略研究

目前應用於懸架控制系統的控制理論比較多,主要有天棚控制、最優控制、預測控制、模糊控制、自適應控制、神經網路控制以及復合控制等等。

3.1 天棚阻尼與開關陰尼控制思想

1974年,美國學者karnopp等提出了天棚阻尼控制思想。原理是在車身上安裝一個與車身振動速度成正比的阻尼器,可以完全防止車身與懸架系統產生共振,達到衰減振動的目的。在天棚控制方式中,控制力取決於車體的絕對速度的反饋,不需要很多感測器也不需要復雜的數學模型,可靠性較好。控制力可以表示為:

式中Csky為比例系數;x為車體垂直振動速度。

但是天棚阻尼是理論上的理想狀態。karnopp為實現「天棚」控制思想又提出了開關阻尼的概念。原理是根據控制信號調節阻尼器阻尼的「軟」、「硬」設置,進而調整阻尼力的大小。其優點是作動器消耗振動能量。最早應用於實車的是美國lord公司的產品,反映效果良好。開關阻尼控制思想的阻尼力演算法可用以下公式表示:

式中:Fd為阻尼力;c為比例系數;x為簧載質量的垂直運動速度,y為非簧載質量的垂直運動速度。目前開關阻尼的控制已經有所應用。

3.2 最優控制

在車輛上運用的最優控制方法常用的有線性最優控制、H∞最優控制等。線性最優控制理論是早期經典控制理論的代表,已經過了理論到實踐的考驗,是目前比較成熟和完整的半主動懸架控制理論。其中使用LQR演算法的理論及實踐應用比較成熟,演算法概要如下:

設懸架自由度彈簧陰尼系統動力方程為:

f (t)表示外部激勵的(r)階向量u (t)是(m)維控制力向量;D是(nXm)控制力位置矩陣;E是(n×r)外部激勵位置矩陣。

狀態空間表達式的形式為:

式中:x(t)為狀態向量(2n);A為系統矩陣(2nX 2n);B為控制力位置矩陣(2nXm);H為外部激勵位置矩陣(2n×r)。

採用LQR模態控制演算法設計主動最優控制力:

國內在相關領域研究比較深人的是裝甲兵工程學院關於履帶車輛懸掛系統的半主動控制策略研究。

3.3 預測控制

預測控制方法提出比較早,它可以預先確定前方路面的信息,並利用這一信息和車輛當時信息來決定控制行為。由於預測控制是利用車輛前輪的擾動信息預估路面的干擾輸入,將車輛的前輪懸架的狀態參數值反饋給控制器進行控制,因此,控制系統有一定的時間來採取措施。然而信息的獲得來自前輪,因此要求系統對信息進行處理並由控制器採取動作歷時很短。鑒於此,目前最優預測控制多採用超聲波感測器等測量方法對車輛前方道路的實際情況進行採集,用此信息來控制懸架執行機構的動作。1984年日產公司研製出聲納式半主動懸架,它能通過聲納裝置預測前方路面信息,及時調整懸架減振器的狀態。

預測控制的問題表現在預測距離是一定的,因此預測提前時間取決於車速,這樣必然具有時變性,而預測控制仍以線性時不變系統為研究對象,測量、參數的時變性和非線性對系統的影響還沒有得到解決。另外,用預測信息來控制懸架執行機構的動作的核心技術是信號的獲取精度問題,要求不受干擾地真實反映路面信息,這往往導致成本、可靠性方面的投人相應增大,應用中要重點考慮。

3.4 自適應控制策略

自適應控制方法應用於汽車懸架控制系統的有自校正控制和模型參考自適應控制兩類。自適應控制考慮了車輛系統參數的時變性,通過自動檢測系統的參數變化來調節控制策略,從而使系統實時逼近最優狀態。自校正控制是一種將受控對象參數在線識別與控制器參數整定相結合的控制方法。

自適應控制存在的問題表現在自校正控制過程需要在線辨識大量的結構參數,所以導致計算量大,實時性不好。而模型參考自適應控制方法涉及路面信息獲得的精度問題,這一點與預測控制存在的問題相似。另外,當懸掛系統參數由於突然的沖擊而在較大的范圍變化時,自適應控制的魯棒性將變壞。

3.5 模糊控制與神經網路控制

在過去的20年中,基於專家知識和經驗的模糊控制及神經網路控制逐步成為解決具有非線性、復雜和不確定因素系統的有效方法。

在車輛懸架控制領域較早應用模糊控制的是Yoshimura教授,他將模糊控制方法應用到汽車主動、半主動懸架當中。該車輛系統由非線性微分方程模型描述,通過模糊推理從若干類阻尼力中選擇合適的阻尼力。模擬結果顯示應用模糊控制的半主動懸架系統大大減小了車身振動加速度。隨後進行的實車試驗取得了較為理想的結果。

模糊控制和神經網路控制是建立在專家知識和經驗的基礎上的,因此人為因素在其中占據著很重要的角色。專家的知識在一定程度上是「主觀」的,如果專家知識的集合不能真實或准確地反應車輛的狀態,那麼控制就失去了准確性。

3.6 復合控制

當前應用於汽車懸架振動控制的控制策略很多,而得到的效果只能說是優越於被動懸架。原因是各種控制策略都有自身無法彌補的缺陷,解決辦法就是將兩種甚至多種控制策略相結合,對懸架進行復合控制。縱觀車輛主動、半主動控制領域,只運用一種控制策略的成功案例並不多見,而採用復合控制策略的成功應用卻很多。近期的文獻記載的控制策略設計有應用於越野車輛(坦克等)的自適應控制與LQG控制的聯合控制,最優預見控制與神經網路控制的復合,以及模糊控制與神經網路控制的復合等等。研究表明,利用復屍合控制方法更適用於汽車、懸架這樣復雜非線性系統的建模與控制,可以預見復合控制方法是今後控制策略研究的一個重要方向。

4.執行機構研究

控制策略最終是通過執行機構對懸架的振動特性進行調解的,因此,執行機構往往代表著半主動懸架系統的發展狀態。根據半主動懸架的結構特點,執行機構分為兩種,即懸架剛度調解系統和減振器阻尼力調節系統。對懸架剛度的調節是通過對懸架彈簧的彈性系數進行調節,應用較多的為空氣彈簧。

相比之下,阻尼調節應用較多。其中阻尼連續可調減振器被認為比較有發展前景。如增大摩擦力的辦法改變阻尼力;採用壓電陶瓷材料改變懸架阻尼;改變減振器節流孔開度以及改變減振器工作液(智能材料)粘度來改變陰尼力等。

調解阻尼最常用的一種方式還是使用粘性連續可控的新型智能材料(電流變或磁流變液體等)作為減振器工作液,從而實現阻尼連續調節。磁流變液阻尼器是當今被認為最有發展前景的,雖然其發展晚於電流變液阻尼器,但是已經得到了飛速的發展和廣泛的應用。磁流變液是一種隨著外加磁場強度的改變其流變性能隨著改變的智能材料。由於磁流變液體是非牛頓液體,其剪切應力是由液體的粘性和屈服應力兩部分組成的。流變特性的改變隨著磁場強度的增加而增加,對外加磁場強度的控制可以在毫秒級對其流變特性進行改變,由液態變為半固態。磁流變液優點很多:其剪切應力較大,可達到50-100 kPa;剪切應力具有對溫度的穩定性和對不存介質的不敏感性;通過對磁場強度的控制來控制剪切應力,耗能很低,同時更安全。

磁流變液也存在著一定的應用問題,主要是減振器內液體紊流產生的雜訊較大和產生強磁場需要的金屬線圈重量問題,這些問題有關研究人員正在研究解決。

5.應用實例

近十多年以來,懸架控制系統的發展日新月異,成果較多。如福特公司生產的雷鳥轎車上的行駛平順性程序控制懸架系統(PRC)。PRC中的減振器配置了一種快速作用旋轉式螺管電磁開關,在感測器和一台6805微處理器為基礎的電子系統的配合下,根據駕駛員的指示和車輛的運行狀態,電磁開關可以調節阻尼。其他成功的應用還有賓士車的自適應阻尼控制懸架系統、凱迪拉克轎車的路感懸架系統(RSS),以及對阻尼和剛度進行綜合控制的豐田電子懸架控制系統和凌志LS400的電子控制空氣懸架系統等。

在軍用汽車領域,磁流變液阻尼器得到了應用。美國內華達大學的研究人員將磁流變阻尼器應用於美軍高機動多用途輪式車輛(HMMWV),圖3為該車應用的阻尼器。

為了對應用磁流變阻尼器的車輛性能進行評估,試驗人員將安裝磁流變阻尼器的「悍馬」與使用傳統被動懸架的HMMWV進行了對比試驗,分別在平順性、操縱穩定性等方面作了比較。結果顯示,應用磁流變半主動懸架的車輛行駛平順性和操縱穩定性比使用傳統懸架的車輛均有所提高。可見,軍用輪式車輛領域是半主動懸架系統的一個重要應用方向。

更高層次的改進是將ABS,TCS,ASR等控制系統與懸架控制系統的集成,即組成汽車動力學集成控制系統,這將是車輛懸架系統與車輛其他控制系統集成化發展的方向。

6.結論與展望

從懸架控制系統的發展狀況可以看出,當前的研究主要集中於控制策略和執行機構。將來的發展應該從這兩方面人手,並加快實車應用的進度。

6.1 控制規律的復合

我們看到,各種控制方法對懸架的振動控制都有一定的有效性,但是都存在著固有的缺陷,這是由其控制原理所決定的。由於汽車懸架系統屬於復雜的非線性系統,單一的控制手段已經不能滿足要求,需要兩種甚至多種控制策略的協同控制,因此,復合控制應該是今後研究工作的一個重點。

6.2 集中力量加快以磁流變減振器為執行機構的半主動懸架的研發進程

當前磁流變液減振器半主動懸架的發展最為整個汽車工業界所關注。在這方面國外成果及應用實例較多,國內還處於理論研究和試驗階段,應用實例很少,問題主要是磁流變液減振器的工作性仍然不穩定,成本較高。因此,當前乃至今後應該以此為重點,展開技術攻關,從研製高性能磁流變材料、優化磁路及結構設計入手,為磁流變半主動懸架的開發作先期基礎性研究。

6.3 越野汽車將是半主動懸架的重要應用領域

目前,半主動懸架技術主要應用在高級轎車上,原因是該技術的實現成本較高。而對該技術需求更為迫切的是越野汽車行業,集中體現在軍用越野汽車領域。隨著車輛裝備信息化建設的逐漸深入,軍用越野汽車也逐漸形成了自身鮮明的發展方向,高機動性就是其發展特色之一,表現在車輛行駛的地域更加廣泛,通過崎嶇、苛刻路面的能力增強,這就要求車輛的行駛平順性與之相適應。任何一項尖端技術從出現到應用到實際都有一個,漫長的過程,半主動懸架技術在國內已經有著廣泛的研究基礎,相關研究機構應該積極開展預研工作,以越野汽車的懸架系統為切人點,將該領域的技術逐漸推廣。

汽車主動懸架的發展及其最新技術
--------------------------------------------------------------------------------
作者:-
自從汽車發明以來,工程師們就一直在研究如何將汽車的懸架系統設計得更好。最初的汽車懸架系統是使用馬車的彈性鋼板,效果當然不會很好。1908年螺旋彈簧開始用於轎車,當時就曾經有兩種截然不同的意見。第一種意見主張安裝剛性較大的螺旋彈簧,以使車輪保持著與路面接觸的傾向,提高輪胎的抓地能力。但是這樣的弊端是乘坐汽車時有較強烈的顛簸感覺。另一種意見認為應該採用較軟的螺旋彈簧,以適應崎嶇不平的路面,提高乘坐汽車時的平穩性及舒適性。但是這樣的汽車操縱性較差。到了三四十年代,獨立懸架開始出現,並得到很大發展。減振器也由早期的摩擦式發展為液力式。這些改進無疑提高了懸架的性能,但無論怎樣改良,此時的懸架仍然屬於被動式懸架,仍然在很多方面有很大局限性。
衡量懸架性能好壞的主要指標是汽車行駛的平順性和操縱穩定性,但這兩個方面是相互排斥的性能要求,往往不能同時滿足。怎樣在二者之間取得合理的平衡以達到最好的效果,一直是工程師們的研究課題。

平順性一般通過車體或車身某個部位(如車底板、駕駛員座椅處)的加速度響應來評價,操縱穩定性則可以通過車輪的動載來度量。例如,若降低彈簧的剛度,則車體加速度減少使平順性變好,但同時會導致車體位移的增加。由此產生車體重心的變動將引起輪胎負荷變化的增加,對操縱穩定性產生不良影響;另一方面,增加彈簧剛度會提高操縱穩定性,但硬的彈簧將導致汽車對路面不平度很敏感,使平順性降低。所以,理想的懸架應該在不同的使用條件下具有不同的彈簧剛度和減振器阻尼,既能滿足平順性要求又能滿足操縱穩定性要求。

但是普遍使用的被動懸架不可能達到設計師們的理想要求。被動懸架因為具有固定的懸架剛度和阻尼系數,在結構設計上只能是滿足平順性和操縱穩定性之間矛盾的折衷,無法達到懸架控制的理想境界。在使用上,為了使被動懸架能夠對不同的路面具有一定的適應性,通常將懸架的剛度和減振器的阻尼設計成具有一定程度的非線性,比如採用變節距螺旋彈簧和三級阻力控制的液壓減振器。

表1 可變特性懸架主要部件動能表

部件名稱
功能
作用

衰減力轉換
穩定器剛性轉換

手動選擇開關


選擇擋位,變換懸架特性

顯示器


顯示手動選擇開關擋位

減振器驅動器


驅動減振器內回轉閥

前支柱、後減振器


內裝回轉閥,可變化衰減力

穩定器驅動器


通過穩定器纜繩,開閉穩定器桿內的油路

穩定器纜繩


連接穩定器驅動器和穩定器桿,傳遞驅動器動作

穩定器桿


具有油缸的結構,可變換穩定器剛性

電子控制裝置


根據手動選擇開關狀態,控制各驅動器

註:「●」為此部件具有此功能。

表2 手動選擇開關擋位特點

擋位
減振器的衰減力
穩定器的剛性
特點

「SPORT」擋位
增強
提高
具有高級跑車的優良轉彎性能與靈活的操縱性能

「TOURING」擋位
減弱
降低
具有高級旅行車的高速操縱穩定性與舒適性

由於被動懸架設計的出發點是在滿足汽車平順性和操縱穩定性之間進行折衷,對於不同的使用要求,只能是在滿足主要性能要求的基礎上犧牲次要性能。所以盡管被動懸架在設計上以不斷改進被動元件而實現了低成本、高可靠性的目標,但始終無法解決同時滿足平順性和操縱穩定性之間相矛盾的要求。

為此,自五六十年代起產生了主動懸架的概念,它能夠根據懸架質量的加速度,利用電控液壓部件主動地控制汽車的振動。在這方面的研究,各大汽車製造公司均不遺餘力。典型的例子,早期有雪鐵龍公司在1955年發展的一種液壓-空氣懸架系統,可以使汽車具有較好的行駛性能和舒適性,但是它的製造工序太復雜,最終難以普及。到90年代,日產公司在無限Q45轎車上應用了新式主動懸架,進一步提高了轎車適應崎嶇路面的能力。

隨著電子技術的發展,出現了可變特性懸架控制系統。它可根據運行條件與路面狀況,以手動控制懸架特性變化。手動開關可選擇兩種擋位:1.「SPORT」擋位,剛性高,相當於高級跑車的懸架特性。2.「TOURING」擋位,柔性,相當於高級旅行車的懸架特性。圖 1為可變特性懸架的構造,表1為其主要部件功能,表2為手動選擇開關擋位特點。

現時引人注意的是賓士公司發展的ABC(Active Body Control)系統,可算是相對先進的主動懸架系統代表。

ABC系統的設計人員從一開始就沒有將注意力放在傳統的思路上,而是另闢蹊徑,集中研究車身在行駛時的跳動。他們認為,從穩定性考慮,通過抑制車身在行駛時的起伏、傾斜及跳動,可以最大限度地提高舒適性,而且更簡單直接。對駕駛而言,採用剛性較大的螺旋彈簧,可以使汽車優越的操縱駕駛性得到保證。早在多年前,研究人員已經進行過這方面的驗證。隨著近年來電子技術及電腦控制在轎車上大量應用,這種新型主動懸架變為現實的條件越來越成熟。最新面世的系統採用了大量電子控制技術,賓士公司稱之為主動式車身控制系統,簡稱ABC 。

傳統的懸架系統工作方式主要是通過厚重的車身跳動,推壓液壓油,通過阻尼減振器抑制車身的振動,並由螺旋彈簧將跳動能量吸收。這種完全被動的方式當然有許多不足之處。而ABC系統則通過感應最輕微的車輪及車身動作,在任何大的車身振動之前及時對懸架系統作出調整,保持車身的平衡。該系統能夠很好地適應各種路面情況,即使在異常崎嶇不平的地方,轎車也能保持優越的操縱性、舒適性及方向穩定性。

為了達到理想的效果,ABC系統在各條懸架滑柱內裝有一套新型的液力調節伺服器,可動態調整的液壓缸根據不同的路面情況自動調節螺旋彈簧座的位置,這一點很重要。當車輪遇到障礙物時,ABC系統通過感測器感知,自動調節彈簧座,並在彈簧座上施加壓力,使之能最大限度地抵消傳遞給車身的跳動能量。同樣的方法,ABC系統還能夠避免轎車在制動、加速及轉彎時產生的車身傾斜。當汽車制動或拐彎時的慣性引起彈簧變形,懸架感測器會檢測出車身的傾斜度和橫向加速度。微電腦根據感測器的信息,與預先設定的數值進行比較計算,並立即確定在什麼位置上將多大的負載加到懸架上,使車身的傾斜減到最小。幾乎可以說,車身在任何狀態下都能保持水平位置。

ABC系統的控制感應裝置由兩個微型處理器及13個感測器組成,每10μs對懸架系統作一次掃描和調整。各感測器分別向微處理器傳送車速、車輪制動壓力、踏動油門踏板的速度、車身垂直方向的振幅及頻率、轉向盤角度及轉向速度等數據。電腦不斷接收這些數據並與預先設定的臨界值進行比較。同時,電腦能獨立控制每一個車輪上的執行元件,從而能在任何時候、任何車輪上產生符合要求的懸架運動以適應汽車的每一種行駛狀況。

ABC系統使汽車對側傾、俯仰、橫擺、跳動和車身高度的控制都能更加迅速、精確,即使在路況較差的路面上,汽車的跳動也很小。而且汽車高速行駛和轉彎的穩定性大大提高。車身的側傾小,車輪外傾角度變化也小,輪胎就能較好地保持與地面垂直接觸,使輪胎對地面的附著力提高,以充分發揮輪胎的驅動制動作用。此外汽車的載重量無論如何變化,汽車始終能保持一定的車身高度,所以懸架的幾何關系也可以確保不變。

目前,這種主動式車身控制系統已經應用在賓士最新的C系列轎車上,雖然價格不菲,但也贏得極佳的口碑,被譽為是動力性能和乘坐舒適性改進的一個里程碑。

Ⅵ 汽車ABS 的發展史

第一台防抱死制動系統ABS(Anti-lock Brake System),在1950年問世,首先被應用在航空領域的飛機上,1968年開始研究在汽車上應用。70年代,由於歐美七國生產的新型轎車的前輪或前後輪開始採用盤式制動器,促使了ABS在汽車上的應用。1980年後,電腦控制的ABS逐漸在歐洲、美國及亞洲日本的汽車上迅速擴大。到目前為止,一些中高級豪華轎車,如西德的賓士、寶馬、雅迪、保時捷、歐寶等系列,英國的勞斯來斯、捷達、路華、賓利等系列,義大利的法拉利、的愛快、領先、快意等系列,法國的波爾舍系列,美國福特的TX3、30X、紅彗星及克萊斯勒的帝王、紐約豪客、男爵、道奇、順風等系列,日本的思域,凌志、豪華本田、奔躍、俊朗、淑女300Z等系列,均採用了先進的ABS。到1993年,美國在轎車上安裝ABS已達46%,現今在世界各國生產的轎車中有近75%的轎車應用ABS。
現今全世界已有本迪克斯、波許、摩根.戴維斯、海斯.凱爾西、蘇麥湯姆、本田、日本無限等許多公司生產ABS,它們中又有整體和非整體之分。預計隨著轎車的迅速發展,將會有更多的廠家生產。
這一時期的各種ABS系統都是採用模擬式電子控制裝置,由於模擬式電子控制裝置存在著反應速慢、控制精度低、易受干擾等缺陷,致使各種ABS系統均末達到預期的控制效果,所以,這些防抱控制系統很快就不再被採用了。
隨著ABS系統的單價逐漸降低,搭載ABS系統的新車數目於1988年突破了爆炸性成長的臨界點,開始飛快成長,當年Bosch的ABS系統年度銷售量首次突破300萬套。技術上的突破讓Bosch在1989年推出的ABS 2E系統首次將原先分離於引擎室(液壓驅動組件)與中控台(電子控制組件)內,必須依賴復雜線路連接的設計更改為「兩組件整合為一」設計!ABS 2E系統也是歷史上第一個舍棄集成電路,改以一個8 k位元組運算速度的微處理器(CPU)負責所有控制工作的ABS系統,再度寫下了新的里程碑。該年保時捷車廠正式宣布全車系都已安裝了ABS,3年後(1992年)賓士車廠也決定緊跟保時捷的腳步。
1990年代前半期ABS系統逐漸開始普及於量產車款。Bosch在1993年推出ABS 2E的改良版:ABS 5.0系統,除了體積更小、重量更輕外,ABS 5.0裝置了運算速度加倍(16 k位元組)的處理器,該公司也在同年年中慶祝售出第1000萬套ABS系統。
ABS系統大幅度提升剎車穩定性同時縮短剎車所需距離」Robert Bosch GmbH(Bosch公司的全名)董事會成員Wolfgang Drees說。不像安全氣囊與安全帶(可以透過死亡數目除以車禍數目的比例來分析),屬於「防患於未然」的ABS系統較難以真實數據佐證它將多少人從鬼門關前搶回?但據德國保險業協會、汽車安全學會分析了導致嚴重傷亡交通事故的原因後的研究顯示,60%的死亡交通事故是由於側面撞車引起的,30%到40%是由於超速行駛、突然轉向或操作不當引發的。我們有理由相信ABS及其衍生的ASR與ESP系統大幅度降低緊急狀況發生車輛失去控制的機率。NHTSA(北美高速公路安全局)曾估計ABS系統拯救了14563名北美駕駛人的性命!
多數車主都沒有遭遇過緊急狀況(也希望永遠不要),卻不能不知道面臨關鍵時刻要如何應對?在緊急情況下踩下剎車時,ABS系統制動分泵會迅速作動,剎車踏板立刻產生異常震動與顯著噪音(ABS系統運作中的正常現象),這時你應毫不猶豫地用力將剎車踩死(除非車上擁有EBD剎車力輔助裝置,否則大多數駕駛者的剎車力量都不足),另外ABS能防止緊急剎車時的車輪抱死現象、所以前輪仍可控制車身方向。駕駛者應邊剎車邊打方向進行緊急避險,以向左側避讓路中障礙物為例,應大力踏下剎車踏板、迅速向左轉動方向盤90度,向右回輪180度,最後再向左回90度。最後要提的是ABS系統依賴精密的車輪速度感測器判斷是否發生抱死情況?平時要經常保持在各個車輪上的感測器的清潔,防止有泥污、油污特別是磁鐵性物質粘附在其表面,這些都可能導致感測器失效或輸入錯誤信號而影響ABS系統正常運作。行車前應經常注意儀錶板上的ABS故障指示燈,如發現閃爍或長亮,ABS系統可能已經故障(尤其是早期系統),應該盡快到維修廠排除故障。
ABS這種最初被應用於飛機上的技術,現在已經十分普及,在十萬元以上級別的轎車上都可見到它的蹤影,有些大客車上也裝有ABS。裝有ABS的車輛在遇到積雪、冰凍或雨天等打滑路面時,可放心的操縱方向盤,進行制動。它不僅有效的防止了事故的發生,還能減少對輪胎的摩損,但它並不能使汽車縮短制動距離,在某些情況下反而會有所增加。

Ⅶ 求兩篇論文:汽車制動系統的發展史;汽車安全系統的發展史;有識之士,幫幫忙,謝謝!

現代汽車制動系統的發展趨勢
從汽車誕生時起,車輛制動系統在車輛的安全方面就扮演著至關重要的角色。近年來,隨著車輛技術的進步和汽車行駛速度的提高,這種重要性表現得越來越明顯。眾多的汽車工程師在改進汽車制動性能的研究中傾注了大量的心血。目前關於汽車制動的研究主要集中在制動控制方面,包括制動控制的理論和方法,以及採用新的技術。

一.制動控制系統的歷史

最原始的制動控制只是駕駛員操縱一組簡單的機械裝置向制動器施加作用力,這時的車輛的質量比較小,速度比較低,機械制動雖已滿足車輛制動的需要,但隨著汽車自質量的增加,助力裝置對機械制動器來說已顯得十分必要。這時,開始出現真空助力裝置。1932年生產的質量為2860kg的凱迪拉克V16車四輪採用直徑419.1mm的鼓式制動器,並有制動踏板控制的真空助力裝置。林肯公司也於1932年推出V12轎車,該車採用通過四根軟索控制真空加力器的鼓式制動器。

隨著科學技術的發展及汽車工業的發展,尤其是軍用車輛及軍用技術的發展,車輛制動有了新的突破,液壓制動是繼機械制動後的又一重大革新。Duesenberg Eight車率先使用了轎車液壓制動器。克萊斯勒的四輪液壓制動器於1924年問世。通用和福特分別於1934年和1939年採用了液壓制動技術。到20世紀50年代,液壓助力制動器才成為現實。

20世紀80年代後期,隨著電子技術的發展,世界汽車技術領域最顯著的成就就是防抱制動系統(ABS)的實用和推廣。ABS集微電子技術、精密加工技術、液壓控制技術為一體,是機電一體化的高技術產品。它的安裝大大提高了汽車的主動安全性和操縱性。防抱裝置一般包括三部分:感測器、控制器(電子計算機)與壓力調節器。感測器接受運動參數,如車輪角速度、角加速度、車速等傳送給控制裝置,控制裝置進行計算並與規定的數值進行比較後,給壓力調節器發出指令。

1936年,博世公司申請一項電液控制的ABS裝置專利促進了防抱制動系統在汽車上的應用。1969年的福特使用了真空助力的ABS制動器;1971年,克萊斯勒車採用了四輪電子控制的ABS裝置。這些早期的ABS裝置性能有限,可靠性不夠理想,且成本高。

1979年,默·本茨推出了一種性能可靠、帶有獨立液壓助力器的全數字電子系統控制的ABS制動裝置。1985年美國開發出帶有數字顯示微處理器、復合主缸、液壓制動助力器、電磁閥及執行器「一體化」的ABS防抱裝置。隨著大規模集成電路和超大規模集成電路技術的出現,以及電子信息處理技術的高速發展,ABS以成為性能可靠、成本日趨下降的具有廣泛應用前景的成熟產品。1992年ABS的世界年產量已超過1000萬輛份,世界汽車ABS的裝用率已超過20%。一些國家和地區(如歐洲、日本、美國等)已制定法規,使ABS成為汽車的標准設備。

二.制動控制系統的現狀

當考慮基本的制動功能量,液壓操縱仍然是最可靠、最經濟的方法。即使增加了防抱制動(ABS)功能後,傳統的「油液制動系統」仍然佔有優勢地位。但是就復雜性和經濟性而言,增加的牽引力控制、車輛穩定性控制和一些正在考慮用於「智能汽車」的新技術使基本的制動器顯得微不足道。

傳統的制動控制系統只做一樣事情,即均勻分配油液壓力。當制動踏板踏下時,主缸就將等量的油液送到通往每個制動器的管路,並通過一個比例閥使前後平衡。而ABS或其他一種制動干預系統則按照每個制動器的需要時對油液壓力進行調節。

目前,車輛防抱制動控制系統(ABS)已發展成為成熟的產品,並在各種車輛上得到了廣泛的應用,但是這些產品基本都是基於車輪加、減速門限及參考滑移率方法設計的。方法雖然簡單實用,但是其調試比較困難,不同的車輛需要不同的匹配技術,在許多不同的道路上加以驗證;從理論上來說,整個控制過程車輪滑移率不是保持在最佳滑移率上,並未達到最佳的制動效果。

另外,由於編制邏輯門限ABS有許多局限性,所以近年來在ABS的基礎上發展了車輛動力學控制系統(VDC)。結合動力學控制的最佳ABS是以滑移率為控制目標的ABS,它是以連續量控制形式,使制動過程中保持最佳的、穩定的滑移率,理論上是一種理想的ABS控制系統滑移率控制的難點在於確定各種路況下的最佳滑移率,另一個難點是車輛速度的測量問題,它應是低成本可靠的技術,並最終能發展成為使用的產品。對以滑移率為目標的ABS而言,控制精度並不是十分突出的問題,並且達到高精度的控制也比較困難;因為路面及車輛運動狀態的變化很大,多種干擾影響較大,所以重要的問題在於控制的穩定性,即系統魯棒性,應保持在各種條件下不失控。防抱系統要求高可靠性,否則會導致人身傷亡及車輛損壞。

因此,發展魯棒性的ABS控制系統成為關鍵。現在,多種魯棒控制系統應用到ABS的控制邏輯中來。除傳統的邏輯門限方法是以比較為目的外,增益調度PID控制、變結構控制和模糊控制是常用的魯棒控制系統,是目前所採用的以滑移率為目標的連續控制系統。模糊控製法是基於經驗規則的控制,與系統的模型無關,具有很好的魯棒性和控制規則的靈活性,但調整控制參數比較困難,無理論而言,基本上是靠試湊的方法。然而對大多數基於目標值的控制而言,控制規律有一定的規律。

另外,也有採用其它的控制方法,如基於狀態空門及線性反饋理論的方法,模糊神經網路控制系統等。各種控制方法並不是單獨應用在汽車上,通常是幾種控制方法組合起來實施。如可以將模糊控制和PID結合起來,兼顧模糊控制的魯棒性和PID控制的高精度,能達到很好的控制效果。

車輪的驅動打滑與制動抱死是很類似的問題。在汽車起動或加速時,因驅動力過大而使驅動輪高速旋轉、超過摩擦極限而引起打滑。此時,車輪同樣不具有足夠的側向力來保持車輛的穩定,車輪切向力也減少,影響加速性能。由此看出,防止車輪打滑與抱死都是要控制汽車的滑移率,所以在ABS的基礎上發展了驅動防滑系統(ASR)。

ASR是ABS的邏輯和功能擴展。ABS在增加了ASR功能後,主要的變化是在電子控制單元中增加了驅動防滑邏輯系統,來監測驅動輪的轉速。ASR大多借用ABS的硬體,兩者共存一體,發展成為ABS/ASR系統。

目前,ABS/ASR已在歐洲新載貨車中普遍使用,並且歐共體法規EEC/71/320已強制性規定在總質量大於3.5t的某些載貨車上使用,重型車是首先裝用的。然而ABS/ASR只是解決了緊急制動時附著系數的利用,並可獲得較短的制動距離及制動方向穩定性,但是它不能解決制動系統中的所有缺陷。因此ABS/ASR功能,同時可進行制動強度的控制。

ABS只有在極端情況下(車輪完全抱死)才會控制制動,在部分制動時,電子制動使可控制單個制動缸壓力,因此反應時間縮短,確保在任一瞬間得到正確的制動壓力。近幾年電子技術及計算機控制技術的飛速發展為EBS的發展帶來了機遇。德國自20世紀80年代以來率先發展了ABS/ASR系統並投入市場,在EBS的研究與發展過程中走到了世界的前列。

德國博世公司在1993年與斯堪尼公司聯合首次在Scania牽引車及掛車上裝用了EBS。然而EBS是全新的系統,它有很大的潛力,必將給現在及將來的制動系統帶來革命性的變革。

三.制動控制系統的發展

今天,ABS/ASR已經成為歐美和日本等發達國家汽車的標准設備。

車輛制動控制系統的發展主要是控制技術的發展。一方面是擴大控制范圍、增加控制功能;另一方面是採用優化控制理論,實施伺服控制和高精度控制。

在第一方面,ABS功能的擴充除ASR外,同時把懸架和轉向控制擴展進來,使ABS不僅僅是防抱死系統,而成為更綜合的車輛控制系統。制動器開發廠商還提出了未來將ABS/TCS和VDC與智能化運輸系統一體化運用的構想。隨著電子控制傳動、懸架系統及轉向裝置的發展,將產生電子控制系統之間的聯系網路,從而產生一些新的功能,如:採用電子控制的離合器可大大提高汽車靜止啟動的效率;在制動過程中,通過輸入一個驅動命令給電子懸架系統,能防止車輛的俯仰。

在第二個方面,一些智能控制技術如神經網路控制技術是現在比較新的控制技術,已經有人將其應用在汽車的制動控制系統中。ABS/ASR並不能解決汽車制動中的所有問題。因此由ABS/ASR進一步發展演變成電子控制制動系統(EBS),這將是控制系統發展的一個重要的方向。但是EBS要想在實際中應用開來,並不是一個簡單的問題。除技術外,系統的成本和相關的法規是其投入應用的關鍵。

經過了一百多年的發展,汽車制動系統的形式已經基本固定下來。隨著電子,特別是大規模、超大規模集成電路的發展,汽車制動系統的形式也將發生變化。如凱西-海斯(K-H)公司在一輛實驗車上安裝了一種電-液(EH)制動系統,該系統徹底改變了制動器的操作機理。通過採用4個比例閥和電力電子控制裝置,K-H公司的EBM就能考慮到基本制動、ABS、牽引力控制、巡航控制制動干預等情況,而不需另外增加任何一種附加裝置。EBM系統潛在的優點是比標准制動器能更加有效地分配基本制動力,從而使制動距離縮短5%。一種完全無油液、完全的電路制動BBW(Brake-By-Wire)的開發使傳統的液壓制動裝置成為歷史
四.全電路制動(BBW)

BBW是未來制動控制系統的L發展方向。全電制動不同於傳統的制動系統,因為其傳遞的是電,而不是液壓油或壓縮空氣,可以省略許多管路和感測器,縮短制動反應時間。全電制動的結構如圖2所示。其主要包含以下部分:

a)電制動器。其結構和液壓制動器基本類似,有盤式和鼓式兩種,作動器是電動機;

b)電制動控制單元(ECU)。接收制動踏板發出的信號,控制制動器制動;接收駐車制動信號,控制駐車制動;接收車輪感測器信號,識別車輪是否抱死、打滑等,控制車輪制動力,實現防抱死和驅動防滑。由於各種控制系統如衛星定位、導航系統,自動變速系統,無級轉向系統,懸架系統等的控制系統與制動控制系統高度集成,所以ECU還得兼顧這些系統的控制;

c)輪速感測器。准確、可靠、及時地獲得車輪的速度;

d)線束。給系統傳遞能源和電控制信號;

e)電源。為整個電制動系統提供能源。與其他系統共用。可以是各種電源,也包括再生能源。

從結構上可以看出這種全電路制動系統具有其他傳統制動控制系統無法比擬的優點:

a)整個制動系統結構簡單,省去了傳統制動系統中的制動油箱、制動主缸、助力裝置。液壓閥、復雜的管路系統等部件,使整車質量降低;

b)制動響應時間短,提高制動性能;

c)無制動液,維護簡單;

d)系統總成製造、裝配、測試簡單快捷,制動分總成為模塊化結構;

e)採用電線連接,系統耐久性能良好;

f)易於改進,稍加改進就可以增加各種電控制功能。

全電制動控制系統是一個全新的系統,給制動控制系統帶來了巨大的變革,為將來的車輛智能控制提供條件。但是,要想全面推廣,還有不少問題需要解決:

首先是驅動能源問題。採用全電路制動控制系統,需要較多的能源,一個盤式制動器大約需要1kW的驅動能量。目前車輛12V電力系統提供不了這么大的能量,因此,將來車輛動力系統採用高壓電,加大能源供應,可以滿足制動能量要求,同時需要解決高電壓帶來的安全問題。

其次是控制系統失效處理。全電制動控制系統面臨的一個難題是制動失效的處理。因為不存在獨立的主動備用制動系統,因此需要一個備用系統保證制動安全,不論是ECU元件失效,感測器失效還是制動器本身、線束失效,都能保證制動的基本性能。實現全電制動控制的一個關鍵技術是系統失效時的信息交流協議,如TTP/C。

系統一旦出現故障,立即發出信息,確保信息傳遞符合法規最適合的方法是多重通道分時區(TDMA),它可以保證不出現不可預測的信息滯後。TTP/C協議是根據TDMA制定的。第三是抗干擾處理。車輛在運行過程中會有各種干擾信號,如何消除這些干擾信號造成的影響,目前存在多種抗干擾控制系統,基本上分為兩種:即對稱式和非對稱式抗干擾控制系統。

對稱式抗干擾控制系統是用兩個相同的CPU和同樣的計算程序處理制動信號。非對稱式抗干擾控制系統是用兩個不同的CPU和不一樣的計算程序處理制動信號。兩種方法各有優缺點。另外,電制動控制系統的軟體和硬體如何實現模塊化,以適應不同種類的車型需要;如何實現底盤的模塊化,是一個重要的難題。只有將制動、轉向、懸架、導航等系統綜合考慮進來,從演算法上模塊化,建立數據匯流排系統,才能以最低的成本獲得最好的控制系統。

電制動控制系統首先用在混合動力制動系統車輛上,採用液壓制動和電制動兩種制動系統。這種混合制動系統是全電制動系統的過渡方案。由於兩套制動系統共存,使結構復雜,成本偏高。

隨著技術的進步,上述的各種問題會逐步得到解決,全電制動控制系統會真正代替傳統的以液壓為主的制動控制系統。圖3是這種全電制動控制系統的配置方案。

五.結論

綜上所述,現代汽車制動控制技術正朝著電子制動控制方向發展。全電制動控制因其巨大的優越性,將取代傳統的以液壓為主的傳統制動控制系統。同時,隨著其他汽車電子技術特別是超大規模集成電路的發展,電子元件的成本及尺寸不斷下降。

汽車電子制動控制系統將與其他汽車電子系統如汽車電子懸架系統、汽車主動式方向擺動穩定系統、電子導航系統、無人駕駛系統等融合在一起成為綜合的汽車電子控制系統,未來的汽車中就不存在孤立的制動控制系統,各種控制單元集中在一個ECU中,並將逐漸代替常規的控制系統,實現車輛控制的智能化。

但是,汽車制動控制技術的發展受整個汽車工業發展的制約。有一個巨大的汽車現有及潛在的市場的吸引,各種先進的電子技術、生物技術、信息技術以及各種智能技術才不斷應用到汽車制動控制系統中來。同時需要各種國際及國內的相關法規的健全,這樣裝備新的制動技術的汽車就會真正應用到汽車的批量生產中。

汽車安全的發展歷程

如今,汽車安全已經成為各大汽車廠商必修的功課,從只說安全的VOLVO到「為了所有人安全」的本田汽車,汽車安全成為汽車廠商宣傳的核心主題之一,那麼,我們現在回頭看看,到底誰才是真正開創汽車安全的鼻祖呢?
在講述ESP、安全帶、安全氣囊甚至G-CON車身之前,讓我們再來看看汽車安全的發展歷史,從歷史來看,汽車安全在汽車發明之後的50年左右才被逐步重視起來,這次我們必須仍然要感謝汽車的鼻祖戴姆勒-賓士汽車,我們還要記住被稱為安全之父的一個人——巴恩伊(Béla Barényi)。

安全車身

1939年8月1日,巴恩伊第一次來到位於斯圖加特市郊辛德芬根的戴姆勒-賓士公司上班。這位年輕人由此開始了改寫了汽車發展史的偉大歷程,因為後來出現的許多安全設計理念和技術都與他的發明息息相關。而在此前,這位脾氣急躁的天才設計師卻總窩在一間木板房裡進行著各種新技術的研發。早在40年代,他就開始注意到汽車的車身設計是決定汽車被動安全的關鍵,他創造性地提出特別設計轉向系統、轉向柱、方向盤、底盤以及車身,以確保車內駕乘人員的安全性。他說:「未來汽車上的轉向系、轉向柱、方向盤、底盤和車身一定會與目前的有所不同。」

從1939年8月起,巴恩伊就在一個96平方米大小的木棚房裡開始了他的設計研發工作。作為當今汽車安全車身技術的基礎,巴恩伊在他的「Terracruiser」(1945)和「Concadoro」(1946)的新車方案中率先提出了他對被動安全的設想和未來車身的設計結合在一起思想。其中,六座的「Terracruiser」在車身中部設計了異常堅固的乘坐艙,並且前面和後面分別與塑性變形碰撞緩沖區彈性連接,它們在事故發生時能吸收碰撞所產生的動力能量。類似的安全特性在三座的「Concadoro」上也有所體現。「Concadoro」車身採用三廂結構設計,單排的座椅使得駕駛艙可以前後調整。此外,設計方案已經有了帶擋板的方向盤和安全轉向柱。而這個時候,汽車巨子豐田汽車尚未誕生,本田汽車仍然在專注於它的摩托車技術。

安全帶

安全帶的發明和使用是當今汽車安全的專家VOLVO,早在上世紀40年代,VOLVO汽車的安全設計也開始啟程,20世紀40年代,VOLVO在PV444型車上配置了諸如膠合擋風玻璃和安全車廂的框架機構等創新配置,這種設計和賓士的巴恩伊在轎廂安全設計理念如出一轍。1959年,VOLVO推出了由尼爾斯·波哈林發明的三點式安全帶,從此改變了整個汽車世界。VOLVO於1962年榮獲第一個安全獎,以後類似獎項就接踵而來。1970年,VOLVO開始在轎車上裝備兒童安全座椅,1987年VOLVO又首先在轎車上裝備了安全氣囊。

安全氣囊

隨著汽車工業的發展,近年來安全氣囊幾乎成了各個汽車廠商轎車的標准配備了,保護汽車乘員的想法最先產生於美國。1952年美國汽車生產者聯合會在理論上闡述了這樣一種汽車安全系統的必要性。幾乎同時,這種系統的原理圖也繪制了出來。1953年8月,美國人約翰.赫特里特首次提出了「汽車用安全氣囊防護裝置」,並在美國獲得了「汽車緩沖安全裝置」專利。

但是真正實現安全氣囊的商用仍然是汽車安全的始祖戴姆勒賓士,由於當時技術水平的限制,還不能把這種想法或專利付諸實現。到了1980年,賓士公司開始實現這種設想,它在自己生產的部分汽車上安裝了安全氣囊。而從1985年起,在全部供應美國市場的汽車上都有安裝了這種安全系統。隨後,又出現了第一個保護駕駛員旁前排座乘員頭部的氣囊。

ABS和ESP

ABS技術是英國人霍納摩爾1920年研製發明並申請專利,早在20世紀30年代,ABS就已經在鐵路機車的制動系統中應用,目的是防止車化在制動過程中抱死,導致車輪與鋼軌局部急劇摩擦而過早損壞。1936年德國博世公司取得了ABS專利權。它是由裝在車輪上的電磁式轉速感測器和控制液壓的電磁閥組成,使用開關方法對制動壓力進行控制。

20世紀40年代末期,為了縮短飛機著陸時的滑行距離、防止車輪在制動時跑偏、甩尾和輪胎劇烈磨耗,飛機制動系統開始採用ABS,並很快成為飛機的標准裝備。20世紀50年代防抱制動系統開始應用於汽車工業。1951年Goodyear航空公司裝於載重車上;1954年福特汽車公司在林肯車上裝用法國航空公司的ABS裝置。

1978年ABS系統有了突破性發展。博世公司與賓士公司合作研製出三通道四輪帶有數字式控制器的ABS系統,並批量裝於賓士轎車上。由於微處理器的引入,使ABS系統開始具有了智能,從而奠定了ABS系統的基礎和基本模式。

90年代初期,在當今炙手可熱的ESP開始被博世汽車發明出來,但是第一款安裝了ESP的轎車仍然是賓士的產品-A級車。

所以,汽車安全幾乎是來自各個工業領域的積累,無論是VOLVO還是賓士,都是這個領域內實現商用化的先鋒,特別是汽車鼻祖賓士,綜合來說,作為安全帶的開山鼻祖,VOLVO的安全的確讓人稱道,還有一貫對安全電子系統專注不止的博世汽車零部件公司,但是值得注意的是,從汽車安全車身設計理念到ABS/ESP、安全氣囊的大規模商用,賓士汽車一直走在其它汽車公司之前。

梅賽德斯-賓士自1900年生產出世界上第一台現代汽車以來,一直引領著整個汽車行業的發展,特別在汽車安全領域,ABS、ESP、安全帶、安全氣囊、碰撞測試等現代汽車的安全基礎要素幾乎都是由梅賽德斯-賓士首創或率先使用的。

Ⅷ 防撞報警器的發展歷史

倒車雷達的工作原抄理為:首先連接電源並打開,車輛進入倒擋時,探測器主機自動進入工作狀態,同時顯示器波段亮起。然後,用專用鑽頭在保險杠上開孔,並將探測器分別裝入孔內。根據車主倒車和停車的習慣,四個探頭探測器分別安裝在汽車的尾部或者兩側安裝兩個。安裝好探測器主機在適當的位置,將顯示器夾在車內後視鏡上,就開始正常工作。

自己裝比較累 還是找專業的吧 裝得不好 把車颳了更得不嘗失

Ⅸ 汽車制動技術的發展與歷史

汽車制動技術的發展與歷史,主要階段是車子前後都是鼓式剎車系統,後來進化到車子是前盤後鼓的剎車系統,到現在的前後都是通風盤式的剎車系統

Ⅹ 防抱死制動系統的發展歷史

ABS系統的發展可追溯到20世紀初期。進入20世紀70年代後期,數字式電子技術和大規模集成電路迅內速發展,為ABS系統容向實用化發展奠定了技術基礎,許多家公司相繼研製了形式多樣的ABS系統。自20世紀80年代中期以來,ABS系統向高性價比的方向發展。有的公司對ABS進行了結構簡化和系統優化,推出了經濟型的ABS裝置;有的企業推出了適用於輕型貨車和客貨兩用汽車的後輪ABS或四輪ABS系統。這些努力都為ABS的迅速普及創造了條件。ABS系統被認為是汽車上採用安全帶以來在安全性方面所取得的最為重要的技術成就。

閱讀全文

與汽車防搶死系統的發展歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296