導航:首頁 > 文化發展 > 貝葉斯發展歷史

貝葉斯發展歷史

發布時間:2021-02-28 09:30:31

Ⅰ 傳說中的貝葉斯統計到底有什麼來頭

貝葉斯統計
英國學者托馬斯·貝葉斯在《論有關機遇問題的求解》中提出一種歸納推理的理論,後被一些統計學者發展為一種系統的統計推斷方法,稱為貝葉斯方法。採用這種方法作統計推斷所得的全部結果,構成貝葉斯統計的內容。認為貝葉斯方法是唯一合理的統計推斷方法的統計學者,組成數理統計學中的貝葉斯學派,其形成可追溯到 20世紀 30 年代。到50~60年代,已發展為一個有影響的學派。時至今日,其影響日益擴大。
中文名 貝葉斯統計 外文名 Bayes statistics 提出人托馬斯·貝葉斯 提出時間 1763年 主 譯 賈乃光
目錄
1 技術原理
▪ 先驗分布
▪ 後驗分布
2 理論爭議
3 發展歷史
技術原理編輯
先驗分布
它是總體分布參數θ的一個概率分布。貝葉斯學派的根本觀點,是認為在關於θ的任何統計推斷問題中,除了使用樣本X所提供的信息外,還必須對θ規定一個先驗分布,它是在進行推斷時不可或缺的一個要素。貝葉斯學派把先驗分布解釋為在抽樣前就有的關於θ的先驗信息的概率表述,先驗分布不必有客觀的依據,它可以部分地或完全地基於主觀信念。
例如,某甲懷疑自己患有一種疾病A,在就診時醫生對他測了諸如體溫、血壓等指標,其結果構成樣本X。引進參數θ:有病時,θ=1;無病時,θ=0。X的分布取決於θ是0還是1,因而知道了X有助於推斷θ是否為1。按傳統(頻率)學派的觀點,醫生診斷時,只使用X提供的信息;而按貝葉斯學派觀點,則認為只有在規定了一個介於0與1之間的數p作為事件{θ=1}的先驗概率時,才能對甲是否有病(即θ是否為1)進行推斷。p這個數刻畫了本問題的先驗分布,且可解釋為疾病A的發病率。先驗分布的規定對推斷結果有影響,如在此例中,若疾病A的發病率很小,醫生將傾向於只有在樣本X顯示出很強的證據時,才診斷甲有病。在這里先驗分布的使用看來是合理的,但貝葉斯學派並不是基於 「p是發病率」這樣一個解釋而使用它的,事實上即使對本病的發病率毫無所知,也必須規定這樣一個p,否則問題就無法求解。
後驗分布
根據樣本 X 的分布Pθ及θ的先驗分布π(θ),用概率論中求條件概率分布的方法,可算出在已知X=x的條件下,θ的條件分布 π(θ|x)。因為這個分布是在抽樣以後才得到的,故稱為後驗分布。貝葉斯學派認為:這個分布綜合了樣本X及先驗分布π(θ)所提供的有關的信息。抽樣的全部目的,就在於完成由先驗分布到後驗分布的轉換。如上例,設p=P(θ=1)=0.001,而π(θ=1|x)=0.86,則貝葉斯學派解釋為:在某甲的指標量出之前,他患病的可能性定為0.001,而在得到X後,認識發生了變化:其患病的可能性提高為0.86,這一點的實現既與X有關,也離不開先驗分布。計算後驗分布的公式本質上就是概率論中著名的貝葉斯公式(見概率),這公式正是上面提到的貝葉斯1763年的文章的一個重要內容。
貝葉斯推斷方法的關鍵在於所作出的任何推斷都必須也只須根據後驗分布π(θ│X),而不能再涉及X的樣本分布Pθ。
例如,在奈曼-皮爾遜理論(見假設檢驗)中,為了確定水平α的檢驗的臨界值C,必須考慮X的分布Pθ,這在貝葉斯推斷中是不允許的。但貝葉斯推斷在如何使用π(θ│X)上,有一定的靈活性,例如為作θ的點估計,可用後驗分布密度h(θ|X)關於θ的最大值點,也可以用π(θ|X)的均值或中位數(見概率分布)等。為作θ的區間估計,可以取區間[A(X),B(X)],使π(A(X)≤θ≤B(X)│X)等於事先指定的數1-α(0<;α<1),並在這個條件下使區間長度B(X)-A(X)最小。若要檢驗關於θ的假設H:θ∈ω,則可以算出ω的後驗概率 π(ω|X),然後在π(ω│X)<1/2時拒絕H。如果是統計決策性質(見統計決策理論)問題,則有一定的損失函數L(θ,α),知道了π(θ|X),可算出各行動α的後驗風險,即L(θ,α)在後驗分布π(θ|X)下的數學期望值,然後挑選行動α使這期望值達到最小,這在貝葉斯統計中稱為「後驗風險最小」的原則,是貝葉斯決策理論中的根本原則和方法。
理論爭議編輯
貝葉斯學派與頻率學派爭論的焦點在於先驗分布的問題。所謂頻率學派是指堅持概率的頻率解釋的統計學家形成的學派。貝葉斯學派認為先驗分布可以是主觀的,它沒有也不需要有頻率解釋。而頻率學派則認為,只有在先驗分布有一種不依賴主觀的意義,且能根據適當的理論或以往的經驗決定時,才允許在統計推斷中使用先驗分布,否則就會喪失客觀性。另一個批評是:貝葉斯方法對任何統計問題都給以一種程式化的解法,這導致人們對問題不去作深入分析,而只是機械地套用公式。貝葉斯學派則認為:從理論上說,可以在一定條件下證明,任何合理的優良性准則必然是相應於一定先驗分布的貝葉斯准則,因此每個統計學家自覺或不自覺地都是「貝葉斯主義者」。他們認為,頻率學派表面上不使用先驗分布,但所得到的解也還是某種先驗分布下的貝葉斯解,而這一潛在的先驗分布,可能比經過慎重選定的主觀先驗分布更不合理。其次,貝葉斯學派還認為,貝葉斯方法對統計推斷和決策問題給出程式化的解是優點而非缺點,因為它免除了尋求抽樣分布,(見統計量)這個困難的數學問題。而且這種程式化的解法並不是機械地套公式,它要求人們對先驗分布、損失函數等的選擇作大量的工作。還有,貝葉斯學派認為,用貝葉斯方法求出的解不需要頻率解釋,因而即使在一次使用下也有意義。反之,根據概率的頻率解釋而提供的解,則只有在大量次數使用之下才有意義,而這常常不符合應用的實際。這兩個學派的爭論是戰後數理統計學發展中的一個特色。這個爭論還遠沒有解決,它對今後數理統計學的發展還將產生影響。
發展歷史編輯
貝葉斯統計的歷史可以上溯到 16 世紀。1713 年,James Bernoulli 意識到在可用於機會游戲的演繹邏輯和每日生活中的歸納邏輯之間的區別,他提出一個著名的問題:前者的機理如何能幫助處理後面的推斷。托馬斯.貝葉斯(ThomasBayes, 1702-1761)是長老會的牧師。他對這個問題產生濃厚的興趣,並且對這個問題進行認真的研究,期間,他寫了一篇文章來回答Bernoulli 的問題,提出了後來以他的名字命名的公式:貝葉斯公式。但是,直到貝葉斯死後才由他的朋友Richard Price 在 1763 年發表了這篇文章,對Bernoulli 的問題提供了回答。這篇文章標志著貝葉斯統計的產生。但貝葉斯統計的思想在開始時並沒有得到重視。後來,Laplace 本人重新發現了貝葉斯公式,而且闡述得比貝葉斯更為清晰。由於貝葉斯統計對於概率的觀點過於主觀,與當時的主流統計觀點相左,此外也很難應用當時嚴謹的數學理論解釋。
例如貝葉斯統計中的先驗概率的觀點,一直以來都是貝葉斯統計學派和非貝葉斯統計學派爭論的焦點之一。在歷史上,貝葉斯統計長期受到排斥,受到當時主流的數學家們的拒絕。例如,近代優秀的統計學家R. A. Fisher 就是貝葉斯統計的反對者。然而,隨著科學的進步,貝葉斯統計在實際應用上取得的成功慢慢改變了人們的觀點。貝葉斯統計慢慢的受到人們的重視,貝葉斯統計已經成為統計學中一門很熱門的研究課題。
從貝葉斯為了回答James Bernoulli 的問題而寫的那一篇論文,提出著名的貝葉斯統計思想以來,經過幾百年的發展,關於貝葉斯統計的論文和學術專著有很多。統計界公認比較權威的貝葉斯統計的著作是James O. Berger 的作品:StatisticalDecisiontheory and Bayesian Analysis。國內有其中譯本:《統計決策論及貝葉斯分析》,它是由賈乃光主譯,吳喜之校譯,中國統計出版社出版。

Ⅱ 貝葉斯判別分析和樸素貝葉斯分類時一樣的嗎

不是的
距離判別分析方法是判別樣品所屬類別的一應用性很強的多因素決策專方法,根據已掌握的、歷史屬上每個類別的若干樣本數據信息,總結出客觀事物分類的規律性,建立判別准則,當遇到新的樣本點,只需根據總結得出的判別公式和判別准則,就能判別該樣本點所屬的類別。
距離判別分析的基本思想是:樣本和哪個總體的距離最近,就判它屬於哪個總體。
貝葉斯判別是根據最小風險代價判決或最大似然比判決,是根據貝葉斯准則進行判別分析的一種多元統計分析法。貝葉斯判別法的基本思想是:設有兩個總體,它們的先驗概率分別為q1、q2,各總體的密度函數為f1(x)、f2(x),在觀測到一個樣本x的情況下,可用貝葉斯公式計算它來自第k個總體的後驗概率

Ⅲ 統計學的發展史

「統計」一詞,英語為statistics,用作復數名詞時,意思是統計資料,作單數名詞時,指的是統計學。一般來說,統計這個詞包括三個含義:統計工作、統計資料和統計學。這三者之間存在著密切的聯系,統計資料是統計工作的成果,統計學來源於統計工作。原始的統計工作即人們收集數據的原始形態已經有幾千年的歷史,而它作為一門科學,還是從17世紀開始的。英語中統計學家和統計員是同一個(statistician),但統計學並不是直接產生於統計工作的經驗總結。每一門科學都有其建立、發展和客觀條件,統計科學則是統計工作經驗、社會經濟理論、計量經濟方法融合、提煉、發展而來的一種邊緣性學科。
1,關於單詞statistics
起源於國情調查,最早意為國情學。
十 七世紀,在英格蘭人們對「政治算術」感興趣。1662年,John Graunt發表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,發展了現在保險公司所用的那種類型的死亡率表。
英文的statistics大約在十八世紀中葉由德國學者 Gottfried Achenwall所創造,是由狀態status和德文的政治算術聯合推導得出的,第一次由John Sinclair所使用,即1797年出現在Encyclopaedia Britannica。(早期還有一個單詞publicitics和statistics競爭「統計」這一含義,如果得勝,現在就開始流行 publicitical learning了)。
2,關於高斯分布或正態分布
1733年,德-莫佛(De Moivre)在給友人分發的一篇文章中給出了正態曲線(這一歷史開始被人們忽略)
1783年,拉普拉斯建議正態曲線方程適合於表示誤差分布的概率。
1809年,高斯發表了他的關於天體運行論的偉大著作,在這一著作的第二卷第三節中,他導出正態曲線適宜於表示誤差規律,同時承認拉普拉斯較早的推導。
正態分布在十九世紀前葉因高斯的工作而加以推廣,所以通常稱作高斯分布。卡爾-皮爾遜指出德-莫佛是正態曲線的創始人,第一個稱它為正態分布,但人們仍習慣稱之高斯分布。
3,關於最小二乘法
1805年,Legendre提出最小二乘法,Gauss聲稱自己在1794年用過,並在1809年基於誤差的高斯分布假設,給出了嚴格推導。
4,其它
在十九世紀中葉,三個不同領域產生的重要發展都是基於隨機性是自然界固有的這個前提上的。
阿道夫·凱特萊特(A. Quetlet,1869)利用概率性的概念來描述社會學和生物學現象(正態曲線從觀察誤差推廣到各種數據)
孟德爾(G.Mendel,1870)通過簡單的隨機性結構公式化了他的遺傳法則
玻爾茲曼(Boltzmann,1866)對理論物理中最重要的基本命題之一的熱力學第二定律給出了一個統計學的解釋。
1859 年,達爾文發表了《物種起源》,達爾文的工作對他的表兄弟高爾登爵士有深遠影響,高爾登比達爾文更有數學素養,他開始利用概率工具分析生物現象,對生物計 量學的基礎做出了重要貢獻(可以稱他為生物信息學之父吧),高爾登爵士是第一個使用相關和回歸這兩個重要概念的人,他還是中位數和百分位數這種概念的創始 人。
受高爾登工作影響,在倫敦的大學學院工作的卡爾-皮爾遜開始把數學和概率論應用於達爾文進化論,從而開創了現代統計時代,贏得了統計之父的稱號,1901年Biometrika第一期出版(卡-皮爾遜是創始人之一)。
5,關於總體和樣本
在早期文獻中可找到由某個總體中抽樣的明確例子,然而從總體中只能取得樣本的認識常常是缺乏的。 ----K.皮爾遜時代
到十九世紀末,對樣本和總體的區別已普遍知道,然而這種區分並不一定總被堅持。----1910年Yule在自己的教科書中指出。
在 1900年代的早期,區分變的更清楚,並在1922年被Fisher特別強調。----Fisher在1922年發表的一篇重要論文中《On the mathematical foundation of theoretical statistics》,說明了總體和樣本的聯系和區別,以及其他概念,奠定了「理論統計學」的基礎。
6,期望、標准差和方差
期望是一個比概率更原始的概念,在十七世紀帕斯卡和費馬時代,期望概念已被公認了。K.皮爾遜最早定義了標准差的概念。1918年,Fisher引入方差的概念。
力學中的矩和統計學中的中數兩者之間的相似性已被概率領域的早期工作者注意到,而K.皮爾遜在1893年第一次在統計意義下使用「矩」。
7,卡方統計量
卡方統計量,是卡-皮爾遜提出用於檢驗已知數據是否來自某一特定的隨機模型,或已知數據是否與已給定的假設一致。卡方檢驗被譽為自1900年以來在科學技術所有分支中20個尖端發明之一,甚至敵人Fisher都對此有極高評價。
8,矩估計與最大似然
卡-皮爾遜提出了使用矩來估計參數的方法。
Fisher則在1912年到1922年間提出了最大似然估計方法,基於直覺,提出了估計的一致性、有效性和充分性的概念。
9,概率的公理化
1933年,前蘇聯數學家柯爾莫格洛夫(Kolmogorov)發表了《概率論的基本概念》,奠定了概率論的嚴格數學基礎。
10,貝葉斯定理
貝葉斯對統計學幾乎沒有什麼貢獻,然而貝葉斯的一篇文章成為貝葉斯學派統計學的思想模式的焦點,這一篇文章發表於1763年,由貝葉斯的朋友、著名人壽保險原理的開拓者Richard Price在貝葉斯死後提出來的----貝葉斯定理。
概 率思想的兩種方法,(1)作為一個物理系統內在的一種物理特性,(2)對某一陳述相信程度的度量。 在1950年代後期止,多數統計學家採取第一種觀點,即概率的相對頻數解釋,這一時期貝葉斯定理僅應用在概率能在頻數框架內解釋的場合。貝葉斯統計學派著 作的一個浪潮始於1960年。自此,贊成和反對貝葉斯學派統計的兩方以皮爾遜和費舍爾所特有的激情和狂怒進行申辯和爭辯。
在1960年以前,幾乎所有的統計書刊都避免使用貝葉斯學派方法,Fisher堅持避免使用貝葉斯定理,並在他的最後一本書中再一次堅決的拒絕了它。卡爾-皮爾遜偶然使用,總的來說是避免的。奈曼和E.S.皮爾遜在他們有關假設檢驗的文章中堅決反對使用。

Ⅳ 統計學的發展史是什麼

「統計」一詞,英語為,用作復數名詞時,意思是統計資料,作單數名詞時,指的是統計學。一般來說,統計這個詞包括三個含義:統計工作、統計資料和統計學。這三者之間存在著密切的聯系,統計資料是統計工作的成果,統計學來源於統計工作。原始的統計工作即人們收集數據的原始形態已經有幾千年的歷史,而它作為一門科學,還是從17世紀開始的。英語中統計學家和統計員是同一個(statistician),但統計學並不是直接產生於統計工作的經驗總結。每一門科學都有其建立、發展和客觀條件,統計科學則是統計工作經驗、社會經濟理論、計量經濟方法融合、提煉、發展而來的一種邊緣性學科。
1,關於單詞statistics
起源於國情調查,最早意為國情學。
十 七世紀,在英格蘭人們對「政治算術」感興趣。1662年,John Graunt發表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,發展了現在保險公司所用的那種類型的死亡率表。
英文的statistics大約在十八世紀中葉由德國學者 Gottfried Achenwall所創造,是由狀態status和德文的政治算術聯合推導得出的,第一次由John Sinclair所使用,即1797年出現在Encyclopaedia Britannica。(早期還有一個單詞publicitics和statistics競爭「統計」這一含義,如果得勝,現在就開始流行 publicitical learning了)。
2,關於高斯分布或正態分布
1733年,德-莫佛(De Moivre)在給友人分發的一篇文章中給出了正態曲線(這一歷史開始被人們忽略)
1783年,拉普拉斯建議正態曲線方程適合於表示誤差分布的概率。
1809年,高斯發表了他的關於天體運行論的偉大著作,在這一著作的第二卷第三節中,他導出正態曲線適宜於表示誤差規律,同時承認拉普拉斯較早的推導。
正態分布在十九世紀前葉因高斯的工作而加以推廣,所以通常稱作高斯分布。卡爾-皮爾遜指出德-莫佛是正態曲線的創始人,第一個稱它為正態分布,但人們仍習慣稱之高斯分布。
3,關於最小二乘法
1805年,Legendre提出最小二乘法,Gauss聲稱自己在1794年用過,並在1809年基於誤差的高斯分布假設,給出了嚴格推導。
4,其它
在十九世紀中葉,三個不同領域產生的重要發展都是基於隨機性是自然界固有的這個前提上的。
阿道夫·凱特萊特(A. Quetlet,1869)利用概率性的概念來描述社會學和生物學現象(正態曲線從觀察誤差推廣到各種數據)
孟德爾(G.Mendel,1870)通過簡單的隨機性結構公式化了他的遺傳法則
玻爾茲曼(Boltzmann,1866)對理論物理中最重要的基本命題之一的熱力學第二定律給出了一個統計學的解釋。
1859 年,達爾文發表了《物種起源》,達爾文的工作對他的表兄弟高爾登爵士有深遠影響,高爾登比達爾文更有數學素養,他開始利用概率工具分析生物現象,對生物計 量學的基礎做出了重要貢獻(可以稱他為生物信息學之父吧),高爾登爵士是第一個使用相關和回歸這兩個重要概念的人,他還是中位數和百分位數這種概念的創始 人。
受高爾登工作影響,在倫敦的大學學院工作的卡爾-皮爾遜開始把數學和概率論應用於達爾文進化論,從而開創了現代統計時代,贏得了統計之父的稱號,1901年Biometrika第一期出版(卡-皮爾遜是創始人之一)。
5,關於總體和樣本
在早期文獻中可找到由某個總體中抽樣的明確例子,然而從總體中只能取得樣本的認識常常是缺乏的。 ----K.皮爾遜時代
到十九世紀末,對樣本和總體的區別已普遍知道,然而這種區分並不一定總被堅持。----1910年Yule在自己的教科書中指出。
在 1900年代的早期,區分變的更清楚,並在1922年被Fisher特別強調。----Fisher在1922年發表的一篇重要論文中《On the mathematical foundation of theoretical statistics》,說明了總體和樣本的聯系和區別,以及其他概念,奠定了「理論統計學」的基礎。
6,期望、標准差和方差
期望是一個比概率更原始的概念,在十七世紀帕斯卡和費馬時代,期望概念已被公認了。K.皮爾遜最早定義了標准差的概念。1918年,Fisher引入方差的概念。
力學中的矩和統計學中的中數兩者之間的相似性已被概率領域的早期工作者注意到,而K.皮爾遜在1893年第一次在統計意義下使用「矩」。
7,卡方統計量
卡方統計量,是卡-皮爾遜提出用於檢驗已知數據是否來自某一特定的隨機模型,或已知數據是否與已給定的假設一致。卡方檢驗被譽為自1900年以來在科學技術所有分支中20個尖端發明之一,甚至敵人Fisher都對此有極高評價。
8,矩估計與最大似然
卡-皮爾遜提出了使用矩來估計參數的方法。
Fisher則在1912年到1922年間提出了最大似然估計方法,基於直覺,提出了估計的一致性、有效性和充分性的概念。
9,概率的公理化
1933年,前蘇聯數學家柯爾莫格洛夫(Kolmogorov)發表了《概率論的基本概念》,奠定了概率論的嚴格數學基礎。
10,貝葉斯定理
貝葉斯對統計學幾乎沒有什麼貢獻,然而貝葉斯的一篇文章成為貝葉斯學派統計學的思想模式的焦點,這一篇文章發表於1763年,由貝葉斯的朋友、著名人壽保險原理的開拓者Richard Price在貝葉斯死後提出來的----貝葉斯定理。
概 率思想的兩種方法,(1)作為一個物理系統內在的一種物理特性,(2)對某一陳述相信程度的度量。 在1950年代後期止,多數統計學家採取第一種觀點,即概率的相對頻數解釋,這一時期貝葉斯定理僅應用在概率能在頻數框架內解釋的場合。貝葉斯統計學派著 作的一個浪潮始於1960年。自此,贊成和反對貝葉斯學派統計的兩方以皮爾遜和費舍爾所特有的激情和狂怒進行申辯和爭辯。
在1960年以前,幾乎所有的統計書刊都避免使用貝葉斯學派方法,Fisher堅持避免使用貝葉斯定理,並在他的最後一本書中再一次堅決的拒絕了它。卡爾-皮爾遜偶然使用,總的來說是避免的。奈曼和E.S.皮爾遜在他們有關假設檢驗的文章中堅決反對使用。

Ⅳ 貝葉斯分析的客觀分析

(一)客觀貝葉斯分析(objective Bayesian analysis)
將貝葉斯分析當做主觀的理論是一種普遍的觀點,但這無論在歷史上,還是在實際中都不是非常准確的。第一個貝葉斯學家,貝葉斯學派的創始人托馬斯·貝斯和拉普萊斯進行貝葉斯分析時,對未知參數使用常數先驗分布。事實上,在統計學的發展中,這種被稱為「逆概率」(inverse probability)的方法在19世紀非常具有代表性,而且對19世紀初的統計學產生了巨大的影響。對使用常數先驗分布的批評,使得傑弗里斯(Jeffreys)對貝葉斯理論進行了具有非常重大意義的改進。伯傑(Berger,1999)認為,大多數貝葉斯應用研究學者都受過拉普萊斯一傑弗里斯(Laplace-Jefferys)貝葉斯分析客觀學派的影響,當然在具體應用上也可能會對其進行現代意義下的改進。
許多貝葉斯學者的目的是想給自己貼上「客觀貝葉斯」的標簽,這種將經典統計分析方法當做真正客觀的觀點是不正確的。對此,伯傑(1999)認為,雖然在哲學層面上同意上述觀點,但他覺得這里還包含很多實踐和社會學中的原因,使得人們不得已使用這個標簽。他強調,統計學家們應該克服那種用一些吸引人的名字來對自己所做的工作大加贊賞的不良習慣。
客觀貝葉斯學派的主要內容是使用無信息先驗分布(noninformativeor default prior distribution)。其中大多數又是使用傑弗里斯先驗分布。最大嫡先驗分布(maximumentropy priors)是另一種常用的無信息先驗分布(雖然客觀貝葉斯學派也常常使用一些待分析總體的已知信息,如均值或方差等)。在最近的統計文獻中經常強調的是參照先驗分布(reference priors)(Bernardo 1979;Yang and Bergen 1997),這種先驗分布無論從貝葉斯的觀點,還是從非貝葉斯的觀點進行評判,都取得了顯著的成功。
客觀貝葉斯學派研究的另一個完全不同的領域是研究對「默認」模型(defaultmodel)的選擇和假設檢驗。這個領域有著許多成功的進展(Berger,1999),而且,當對一些問題優先選擇默認模型時,還有許多值得進一步探討的問題。
經常使用非正常先驗分布(improper priordistribution)也是客觀貝葉斯學派面臨的主要問題,這不能滿足貝葉斯分析所要求的一致性(coherency)。同樣,一個選擇不適當的非正常先驗分布可能會導致一個非正常的後驗分布,這就要求貝葉斯分析過程中特別要對此類問題加以重視,以避免上述問題的產生。同樣,客觀貝葉斯學派也經常從非貝葉斯的角度進行分析,而且得出的結果也非常有效。

Ⅵ 貝葉斯博弈是怎樣一個過程

貝葉斯博弈來(Bayesian game)在博弈論中所指的是自:博弈參與者對於對手的收益函數,無法獲得完全信息(complete information);因此貝葉斯博弈也被稱為不完全信息博弈。
在約翰·海薩尼的研究框架下,我們可以將自然(Nature)作為一個參與者引入到貝葉斯博弈中。自然將一個隨機變數賦予每個參與者。這個隨機變數決定了該參與者的類型(type),並且決定了各個類型出現的概率、或是概率密度函數。在博弈進行過程中,根據每個參與者的類型空間所賦的概率分布,自然替每個參與者隨機地選取一種類型。海薩尼的這一方法將貝葉斯博弈從不完全信息轉化為不完美信息(此時,有的參與者不知道該博弈的歷史)。參與者的類型決定了該參與者的收益函數。在貝葉斯博弈中,不完全信息所指的是,至少存在一個參與者,他(她)不能確定其他某個參與者的類型,從而也不能確定其收益函數。

Ⅶ 什麼是貝葉斯納什均衡

博弈論(Game Theory),有時也稱為對策論,或者賽局理論,應用數學的一個分支, 目前在生物學,經濟學,國際關系,計算機科學, 政治學,軍事戰略和其他很多學科都有廣泛的應用。主要研究公式化了的激勵結構(游戲或者博弈(Game))間的相互作用。是研究具有斗爭或競爭性質現象的數學理論和方法。也是運籌學的一個重要學科。

博弈論考慮游戲中的個體的預測行為和實際行為,並研究它們的優化策略。 表面上不同的相互作用可能表現出相似的激勵結構(incentive structure),所以他們是同一個游戲的特例。其中一個有名有趣的應用例子是囚徒困境悖論(Prisoner's dilemma)。

具有競爭或對抗性質的行為成為博弈行為。在這類行為中,參加斗爭或競爭的各方各自具有不同的目標或利益。為了達到各自的目標和利益,各方必須考慮對手的各種可能的行動方案,並力圖選取對自己最為有利或最為合理的方案。比如日常生活中的下棋,打牌等。博弈論就是研究博弈行為中斗爭各方是否存在著最合理的行為方案,以及如何找到這個合理的行為方案的數學理論和方法。

生物學家使用博弈理論來理解和預測進化論的某些結果。例如,John Maynard Smith 和George R. Price 在1973年發表於Nature上的論文中提出的「evolutionarily stable strategy」的這個概念就是使用了博弈理論。還可以參見進化博弈理論(evolutionary game theory)和行為生態學(behavioral ecology)。

博弈論也應用於數學的其他分支,如概率,統計和線性規劃等。

[編輯]博弈論簡史
對於博弈論的研究,開始於策墨洛(Zermelo,1913),波雷爾(Borel,1921)及馮·諾伊曼(von Neumann, 1928),後來由馮·諾伊曼和奧斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次對其系統化和形式化(參照Myerson, 1991)。隨後約翰·福布斯·納什(John Forbes Nash Jr., 1950, 1951)利用不動點定理證明了均衡點的存在,為博弈論的一般化奠定了堅實的基礎。

當代博弈論的「三大家」和「四君子」

"三大家" 包括約翰·福布斯·納什、約翰·C·海薩尼,以及萊因哈德·澤爾騰。這三人同時因為他們對博弈論的突出貢獻而獲得1994年的瑞典銀行經濟學獎(也稱諾貝爾經濟學獎)。

"四君子" 包括羅伯特·J·奧曼、肯·賓摩爾、戴維·克瑞普斯,以及阿里爾·魯賓斯坦。

[編輯]博弈論分類
博弈的分類根據不同的基準也有不同的分類。一般認為,博弈主要可以分為合作博弈和非合作博弈。它們的區別在於相互發生作用的當事人之間有沒有一個具有約束力的協議,如果有,就是合作博弈,如果沒有,就是非合作博弈。

從行為的時間序列性,博弈論進一步分為兩類:靜態博弈是指在博弈中,參與人同時選擇或雖非同時選擇但後行動者並不知道先行動者採取了什麼具體行動;動態博弈是指在博弈中,參與人的行動有先後順序,且後行動者能夠觀察到先行動者所選擇的行動。通俗的理解:"囚徒困境"就是同時決策的,屬於靜態博弈;而棋牌類游戲等決策或行動有先後次序的,屬於動態博弈

按照參與人對其他參與人的了解程度分為完全信息博弈和不完全信息博弈。完全博弈是指在博弈過程中,每一位參與人對其他參與人的特徵、策略空間及收益函數有準確的信息。如果參與人對其他參與人的特徵、策略空間及收益函數信息了解的不夠准確、或者不是對所有參與人的特徵、策略空間及收益函數都有準確的信息,在這種情況下進行的博弈就是不完全信息博弈。

目前經濟學家們現在所談的博弈論一般是指非合作博弈,由於合作博弈論比非合作博弈論復雜,在理論上的成熟度遠遠不如非合作博弈論。非合作博弈又分為:完全信息靜態博弈,完全信息動態博弈,不完全信息靜態博弈,不完全信息動態博弈。與上述四種博弈相對應的均衡概念為:納什均衡(Nash equilibrium),子博弈精煉納什均衡(subgame perfect Nash equilibrium),貝葉斯納什均衡(Bayesian Nash equilibrium),精煉貝葉斯納什均衡(perfect Bayesian Nash equilibrium)。

博弈論還又很多分類,比如:以博弈進行的次數或者持續長短可以分為有限博弈和無限博弈;以表現形式也可以分為一般型(戰略型)或者展開型,等等。

[編輯]博弈論的意義
博弈論的研究方法和其他許多利用數學工具研究社會經濟現象的學科一樣,都是從復雜的現象中抽象出基本的元素,對這些元素構成的數學模型進行分析,而後逐步引入對其形勢產影響的其他因素,從而分析其結果。

基於不同抽象水平,形成三種博弈表述方式,標准型、擴展型和特徵函數型利用這三種表述形式,可以研究形形色色的問題。因此,它被稱為「社會科學的數學」從理論上講,博弈論是研究理性的行動者相互作用的形式理論,而實際上正深入到經濟學、政治學、社會學等等,被各門社會科學所應用。

[編輯]博弈論與納什平衡
博弈論(game theory)對人的基本假定是:人是理性的(rational,或者說自私的),理性的人是指他在具體策略選擇時的目的是使自己的利益最大化,博弈論研究的是理性的人之間如何進行策略選擇的。

納什(John Nash)編制的博弈論經典故事"囚徒的困境",說明了非合作博弈及其均衡解的成立,故稱"納什平衡"。

所有的博弈問題都會遇到三個要素。在囚徒的故事中,兩個囚徒是當事人(players)又稱參與者;當事人所做的選擇策略 (strategies)是承認了殺人事實,最後兩個人均贏得(payoffs)了中間的宣判結果。如果兩個囚徒之中有一個承認殺人,另外一個抵賴,不承認殺人,那麼承認者將會得到減刑處理,而抵賴者將會得到最嚴厲的死刑判決,在納什故事中兩個人都承認了犯罪事實,所以兩個囚徒得到的是中間的結果。

類似的: 我們也能從「自私的基因」等理論中看到「納什平衡」的體現。

在互聯網這個原始叢林中:最優策略是如何產生的呢?

[編輯]博弈中最優策略的產生
艾克斯羅德(Robert Axelrod)在開始研究合作之前,設定了兩個前提:一、每個人都是自私的;二、沒有權威干預個人決策。也就是說,個人可以完全按照自己利益最大化的企圖進行決策。在此前提下,合作要研究的問題是:第一、人為什麼要合作;第二、人什麼時候是合作的,什麼時候又是不合作的;第三、如何使別人與你合作。

社會實踐中有很多合作的問題。比如國家之間的關稅報復,對他國產品提高關稅有利於保護本國的經濟,但是國家之間互提關稅,產品價格就提高了,喪失了競爭力,損害了國際貿易的互補優勢。在對策中,由於雙方各自追求自己利益的最大化,導致了群體利益的損害。對策論以著名的囚犯困境來描述這個問題。

A和B各表示一個人,他們的選擇是完全無差異的。選擇C代表合作,選擇D代表不合作。如果AB都選擇C合作,則兩人各得3分;如果一方選C,一方選D,則選C的得零分,選D的得5分;如果AB都選D,雙方各得1分。

顯然,對群體來說最好的結果是雙方都選C,各得3分,共得6分。如果一方選C,一方選D,總體得5分。如果兩人都選D,總體得2分。

對策學界用這個矩陣來描述個體理性與群體理性的沖突:每個人在追求個體利益最大化時,就使群體利益受損,這就是囚徒困境。在矩陣中,對於A來說,當對方選 C,他選D得5分,選C只得3分;當對方選D,他選D得1分,選C得零分。因此,無論對方選C或D,對A來說,選D都得分最多。這是A單方面的優超策略。而當兩個優超策略相遇,即A,B都選D時,結果是各得1分。這個結果在矩陣中並非最優。困境就在於,每個人採取各自的優超策略時,得出的解是穩定的,但不是帕累托最優的,這個結果體現了個體理性與群體理性的矛盾。在數學上,這個一次性決策的矩陣沒有最優解。

如果博弈進行多次,只要對策者知道博弈次數,他們在最後一次肯定採取互相背叛的策略。既然如此,前面的每一次也就沒有合作的必要,因此,在次數已知的多次博弈中,對策者沒有一次會合作。

如果博弈在多人間進行,而且次數未知,對策者就會意識到,當持續地採取合作並達成默契時,對策者就能持續地各得3分,但如果持續地不合作的話,每個人就永遠得1分。這樣,合作的動機就顯現出來。多次對局下,未來的收益應比現在的收益多一個折現率W,W越大,表示未來的收益越重要。在多人對策持續進行下去,且W比較大,即未來充分重要時,最優的策略是與別人採取的策略有關的。假設某人的策略是,第一次合作,以後只要對方不合作一次,他就永不合作。對這種對策者,當然合作下去是上策。假如有的人不管對方採取什麼策略,他總是合作,那麼總是對他採取不合作的策略得分最多。對於總是不合作的人,也只能採取不合作的策略。

艾克斯羅德做了一個實驗,邀請多人來參加游戲,得分規則與前面的矩陣相同,什麼時候結束游戲是未知的。他要求每個參賽者把追求得分最多的策略寫成計算機程序,然後用單循環賽的方式將參賽程序兩兩博弈,以找出什麼樣的策略得分最高。

第一輪游戲有14個程序參加,再加上艾克斯羅德自己的一個隨機程序(即以50%的概率選取合作或不合作),運轉了300次。結果得分最高的程序是加拿大學者羅伯布寫的"一報還一報"(tit for tat)。這個程序的特點是,第一次對局採用合作的策略,以後每一步都跟隨對方上一步的策略,你上一次合作,我這一次就合作,你上一次不合作,我這一次就不合作。艾克斯羅德還發現,得分排在前面的程序有三個特點:第一,從不首先背叛,即"善良的";第二,對於對方的背叛行為一定要報復,不能總是合作,即" 可激怒的";第三,不能人家一次背叛,你就沒完沒了的報復,以後人家只要改為合作,你也要合作,即"寬容性"。

為了進一步驗證上述結論,艾氏決定邀請更多的人再做一次游戲,並把第一次的結果公開發表。第二次徵集到了62個程序,加上他自己的隨機程序,又進行了一次競賽。結果,第一名的仍是"一報還一報"。艾氏總結這次游戲的結論是:第一,"一報還一報"仍是最優策略。第二,前面提到的三個特點仍然有效,因為63人中的前15名里,只有第8名的哈靈頓程序是"不善良的",後15名中,只有1個總是合作的是"善良的"。可激怒性和寬容性也得到了證明。此外,好的策略還必須具有的一個特點是"清晰性",能讓對方在三、五步對局內辨識出來,太復雜的對策不見得好。"一報還一報"就有很好的清晰性,讓對方很快發現規律,從而不得不採取合作的態度。

[編輯]合作的進行過程及規律
"一報還一報"的策略在靜態的群體中得到了很好的分數,那麼,在一個動態的進化的群體中,這種合作者能否產生、發展、生存下去呢?群體是會向合作的方向進化,還是向不合作的方向進化?如果大家開始都不合作,能否在進化過程中產生合作?為了回答這些疑問,艾氏用生態學的原理來分析合作的進化過程。

假設對策者所組成的策略群體是一代一代進化下去的,進化的規則包括:一,試錯。人們在對待周圍環境時,起初不知道該怎麼做,於是就試試這個,試試那個,哪個結果好就照哪個去做。第二,遺傳。一個人如果合作性好,他的後代的合作基因就多。第三,學習。比賽過程就是對策者相互學習的過程,"一報還一報"的策略好,有的人就願意學。按這樣的思路,艾氏設計了一個實驗,假設63個對策者中,誰在第一輪中的得分高,他在第二輪的群體中所佔比例就越高,而且是他的得分的正函數。這樣,群體的結構就會在進化過程中改變,由此可以看出群體是向什麼方向進化的。

實驗結果很有趣。"一報還一報"原來在群體中佔1/63,經過1000代的進化,結構穩定下來時,它佔了24%。另外,有一些程序在進化過程中消失了。其中有一個值得研究的程序,即原來前15名中唯一的那個"不善良的"哈靈頓程序,它的對策方案是,首先合作,當發現對方一直在合作,它就突然來個不合作,如果對方立刻報復它,它就恢復合作,如果對方仍然合作,它就繼續背叛。這個程序一開始發展很快,但等到除了"一報還一報"之外的其它程序開始消失時,它就開始下降了。因此,以合作系數來測量,群體是越來越合作的。

進化實驗揭示了一個哲理:一個策略的成功應該以對方的成功為基礎。"一報還一報"在兩個人對策時,得分不可能超過對方,最多打個平手,但它的總分最高。它賴以生存的基礎是很牢固的,因為它讓對方得到了高分。哈靈頓程序就不是這樣,它得到高分時,對方必然得到低分。它的成功是建立在別人失敗的基礎上的,而失敗者總是要被淘汰的,當失敗者被淘汰之後,這個好占別人便宜的成功者也要被淘汰。

那麼,在一個極端自私者所組成的不合作者的群體中,"一報還一報"能否生存呢?艾氏發現,在得分矩陣和未來的折現系數一定的情況下,可以算出,只要群體的 5%或更多成員是"一報還一報"的,這些合作者就能生存,而且,只要他們的得分超過群體的總平均分,這個合作的群體就會越來越大,最後蔓延到整個群體。反之,無論不合作者在一個合作者佔多數的群體中有多大比例,不合作者都是不可能自下而上的。這就說明,社會向合作進化的棘輪是不可逆轉的,群體的合作性越來越大。艾克斯羅德正是以這樣一個鼓舞人心的結論,突破了"囚犯困境"的研究困境。

在研究中發現,合作的必要條件是:第一、關系要持續,一次性的或有限次的博弈中,對策者是沒有合作動機的;第二、對對方的行為要做出回報,一個永遠合作的對策者是不會有人跟他合作的。

那麼,如何提高合作性呢?首先,要建立持久的關系,即使是愛情也需要建立婚姻契約以維持雙方的合作。(火車站的小販為什麼要騙人?為什麼工作中要形成小組制度?換防的時候一方總是要小小地進攻一下的,在中越前線就是這樣)第二、要增強識別對方行動的能力,如果不清楚對方是合作還是不合作,就沒法回報他了。第三、要維持聲譽,說要報復就一定要做到,人家才知道你是不好欺負的,才不敢不與你合作。第四、能夠分步完成的對局不要一次完成,以維持長久關系,比如,貿易、談判都要分步進行,以促使對方採取合作態度。第五、不要嫉妒人家的成功,"一報還一報"正是這樣的典範。第六、不要首先背叛,以免擔上罪魁禍首的道德壓力。第七、不僅對背叛要回報,對合作也要作出回報。第八、不要耍小聰明,占人家便宜。

艾克斯羅德在《合作的進化》一書結尾提出幾個結論。第一、友誼不是合作的必要條件,即使是敵人,只要滿足了關系持續,互相回報的條件,也有可能合作。比如,第一次世界大戰期間,德英兩軍在戰壕戰中遇上了三個月的雨季,雙方在這三個月中達成了默契,互相不攻擊對方的糧車給養,到大反攻時再你死我活地打。這個例子說明,友誼不是合作的前提。第二、預見性也不是合作的前提,艾氏舉出生物界低等動物、植物之間合作的例子來說明這一點。但是,當有預見性的人類了解了合作的規律之後,合作進化的過程就會加快。這時,預見性是有用的,學習也是有用的。

當游戲中考慮到隨機干擾,即對策者由於誤會而開始互相背叛的情形時,吳堅忠博士經研究發現,以修正的"一報還一報",即以一定的概率不報復對方的背叛,和 "悔過的一報還一報",即以一定的概率主動停止背叛。群體所有成員處理隨機環境的能力越強,"悔過的一報還一報"效果越好,"寬大的一報還一報"效果越差。

[編輯]艾克斯羅德的貢獻與局限性
艾克斯羅德通過數學化和計算機化的方法研究如何突破囚徒困境,達成合作,將這項研究帶到了一個全新境界,他在數學上的證明無疑是十分雄辯和令人信服的,而且,他在計算機模擬中得出的一些結論是非常驚人的發現,比如,總分最高的人在每次博弈中都沒有拿到最高分。(劉邦和項羽的戰爭)

艾氏所發現的"一報還一報"策略,從社會學的角度可以看作是一種"互惠式利他",這種行為的動機是個人私利,但它的結果是雙方獲利,並通過互惠式利他有可能復蓋了范圍最廣的社會生活,人們通過送禮及回報,形成了一種社會生活的秩序,這種秩序即使在多年隔絕,語言不通的人群之間也是最易理解的東西。比如,哥倫布登上美洲大陸時,與印地安人最初的交往就開始於互贈禮物。有些看似純粹的利他行為,比如無償損贈,也通過某些間接方式,比如社會聲譽的獲得,得到了回報。研究這種行為,將對我們理解社會生活有很重要的意義。

囚徒困境擴展為多人博弈時,就體現了一個更廣泛的問題——"社會悖論",或"資源悖論"。人類共有的資源是有限的,當每個人都試圖從有限的資源中多拿一點兒時,就產生了局部利益與整體利益的沖突。人口問題、資源危機、交通阻塞,都可以在社會悖論中得以解釋,在這些問題中,關鍵是通過研究,制定游戲規則來控制每個人的行為。

艾克斯羅德的一些結論在中國古典文化道德傳統中可以很容易地找到對應,"投桃報李"、"人不犯我,我不犯人"都體現了"tit for tat"的思想。但這些東西並不是最優的,因為"一報還一報"在充滿了隨機性的現實社會生活里是有缺陷的。對此,孔子在幾千年前就說出了"以德報德,以直報怨"這樣精彩的修正策略,所謂"直",就是公正,以公正來回報對方的背叛,是一種修正了的"一報還一報",修正的是報復的程度,本來會讓你損失5分,現在只讓你損失3分,從而以一種公正審判來結束代代相續的報復,形成文明。

但是,艾氏對博弈者的一些假設和結論使其研究不可避免地與現實脫節。首先,《合作的進化》一書暗含著一個重要的假定,即,個體之間的博弈是完全無差異的。現實的博弈中,對策者之間絕對的平等是不可能達到的。一方面,對策者在實際的實力上有差異,雙方互相背叛時,可能不是各得1分,而是強者得5分,弱者得0分,這樣,弱者的報復就毫無意義。另一方面,即使對局雙方確實旗鼓相當,但某一方可能懷有賭徒心理,認定自己更強大,採取背叛的策略能佔便宜。艾氏的得分矩陣忽視了這種情形,而這種賭徒心理恰恰在社會上大量引發了零和博弈。因此,程序還可以在此基礎上進一步改進。

其次,艾氏認為合作不需預期和信任。這是他受到質疑頗多之處。對策者根據對方前面的戰術來制定自己下面的戰術,合作要求個體能夠識別那些曾經相遇過的個體並且記得與其相互作用的歷史,以便作出反應,這些都暗含著"預期"行為。在應付復雜的對策環境時,信任可能是對局雙方達成合作的必不可少的環節。但是,預期與信任如何在計算機的程序中體現出來,仍是需要研究的。

最後,重復博弈在現實中是很難完全實現的。一次性博弈的大量存在,引發了很多不合作的行為,而且,對策的一方在遭到對方背叛之後,往往沒有機會也沒有還手之力去進行報復。比如,資本積累階段的違約行為,國家之間的核威懾。在這些情況下,社會要使交易能夠進行,並且防止不合作行為,必須通過法制手段,以法律的懲罰代替個人之間的"一報還一報",規范社會行為。這是艾克斯羅德的研究對制度學派的一個重要啟發。

Ⅷ 貝葉斯原理及應用

貝葉斯決策理論是主觀貝葉斯派歸納理論的重要組成部分。貝葉斯決策就是在不完全情報下,對部分未知的狀態用主觀概率估計,然後用貝葉斯公式對發生概率進行修正,最後再利用期望值和修正概率做出最優決策。貝葉斯決策理論方法是統計模型決策中的一個基本方法,其基本思想是:1、已知類條件概率密度參數表達式和先驗概率。2、利用貝葉斯公式轉換成後驗概率。3、根據後驗概率大小進行決策分類。他對統計推理的主要貢獻是使用了"逆概率"這個概念,並把它作為一種普遍的推理方法提出來。貝葉斯定理原本是概率論中的一個定理,這一定理可用一個數學公式來表達,這個公式就是著名的貝葉斯公式。 貝葉斯公式是他在1763年提出來的:假定B1,B2,……是某個過程的若干可能的前提,則P(Bi)是人們事先對各前提條件出現可能性大小的估計,稱之為先驗概率。如果這個過程得到了一個結果A,那麼貝葉斯公式提供了我們根據A的出現而對前提條件做出新評價的方法。P(Bi∣A)既是對以A為前提下Bi的出現概率的重新認識,稱 P(Bi∣A)為後驗概率。經過多年的發展與完善,貝葉斯公式以及由此發展起來的一整套理論與方法,已經成為概率統計中的一個冠以「貝葉斯」名字的學派,在自然科學及國民經濟的許多領域中有著廣泛應用。公式:設D1,D2,……,Dn為樣本空間S的一個劃分,如果以P(Di)表示事件Di發生的概率,且P(Di)>0(i=1,2,…,n)。對於任一事件x,P(x)>0,則有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)貝葉斯預測模型在礦物含量預測中的應用 貝葉斯預測模型在氣溫變化預測中的應用 貝葉斯學習原理及其在預測未來地震危險中的應用 基於稀疏貝葉斯分類器的汽車車型識別 信號估計中的貝葉斯方法及應用 貝葉斯神經網路在生物序列分析中的應用 基於貝葉斯網路的海上目標識別 貝葉斯原理在發動機標定中的應用 貝葉斯法在繼電器可靠性評估中的應用 相關書籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《貝葉斯決策》 黃曉榕 《經濟信息價格評估以及貝葉斯方法的應用》 張麗 , 閆善文 , 劉亞東 《全概率公式與貝葉斯公式的應用及推廣》 周麗琴 《貝葉斯均衡的應用》 王輝 , 張劍飛 , 王雙成 《基於預測能力的貝葉斯網路結構學習》 張旭東 , 陳鋒 , 高雋 , 方廷健 《稀疏貝葉斯及其在時間序列預測中的應用》 鄒林全 《貝葉斯方法在會計決策中的應用》 周麗華 《市場預測中的貝葉斯公式應用》 夏敏軼 , 張焱 《貝葉斯公式在風險決策中的應用》 臧玉衛 , 王萍 , 吳育華 《貝葉斯網路在股指期貨風險預警中的應用》 黨佳瑞 , 胡杉杉 , 藍伯雄 《基於貝葉斯決策方法的證券歷史數據有效性分析》 肖玉山 , 王海東 《無偏預測理論在經驗貝葉斯分析中的應用》 嚴惠雲 , 師義民 《Linex損失下股票投資的貝葉斯預測》 卜祥志 , 王紹綿 , 陳文斌 , 余貽鑫 , 岳順民 《貝葉斯拍賣定價方法在配電市場定價中的應用》 劉嘉焜 , 范貽昌 , 劉波 《分整模型在商品價格預測中的應用》 《Bayes方法在經營決策中的應用》 《決策有用性的信息觀》 《統計預測和決策課件》 《貝葉斯經濟時間序列預測模型及其應用研究》 《貝葉斯統計推斷》 《決策分析理論與實務》

Ⅸ 貝葉斯Logistic分析是什麼做什麼用的麻煩舉個具體的例子。

個人的觀點如下:
1.所謂預測,首先應該具有如下函數形式y=f(x).從時間角度,預測可以分為兩種:
第一種:預測變數X和響應變數Y在同一個時間跨度范圍內,用當前已知信息預測當前未知信息,比如在多元線性回歸中。用已知的響應變數值信息建立一個模型來預測缺失的響應變數值。
第二種:預測變數X和響應變數Y不在同一個時間跨度范圍內,且預測變數X時間發生在前,響應變數Y發生時間在後,此時用預測變數X信息預測響應變數Y,比如logistic回歸分析,預測變數X時間一定在響應變數Y之前發生。
2.顯然,在貝葉斯判別分析中,如果我們不考慮響應變數Y的缺失情況,響應變數的發生時間應該不會超過預測變數X的發生時間;因為Y是先驗事件,那麼此時用得到的判別函數去對新的觀測值進行判別時,我們就不能把這種歸類叫做「預測」,而應該叫做「歸類」。也就是說,所得到的「預測」值Y實際上應該是「歸類」值。考慮時間因素,實際上這種「歸類」值是對響應變數Y的歷史信息的一個「總結」,而不是對未來信息的一個「預測」。
3.而在logistic回歸分析中,我們可以根據業務需要,人為對Y變數設置一個可以大於X的發生時間,這樣一來,所得到的模型應該就是嚴格意義上的預測模型,因為我們可以用過去的X的信息預測將來Y的發生情況。
不知道這種理解對不對?
4.綜述,個人認為把proc discrim過程和proc logistic過程做比較本身就是錯誤的,但是我看到很多外國文獻都是把它們做對比。

Ⅹ 什麼時候用全概率公式和貝葉斯公式

對一個較復雜的事件A,如果能找到一伴隨A發生的完備事件組B1、B2```,而計算各個B的概率與條件概率P(A/Bi)相對又要容易些,這是為了計算與事件A有關的概率,可能需要使用全概率公式和Bayes公式。

1、全概率公式為概率論中的重要公式,它將對一復雜事件A的概率求解問題轉化為了在不同情況下發生的簡單事件的概率的求和問題。

內容:如果事件B1、B2、B3…Bn 構成一個完備事件組,即它們兩兩互不相容,其和為全集;並且P(Bi)大於0,則對任一事件A有

P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。

或者:p(A)=P(AB1)+P(AB2)+...+P(ABn)),其中A與Bn的關系為交)。

2、貝葉斯定理是關於隨機事件A和B的條件概率(或邊緣概率)的一則定理。其中P(A|B)是在B發生的情況下A發生的可能性。

早在18世紀,英國學者貝葉斯(1702~1761)曾提出計算條件概率的公式用來解決如下一類問題:假設H[1],H[2]…,H[n]互斥且構成一個完全事件,

已知它們的概率P(H[i]),i=1,2,…,n,現觀察到某事件A與H[1],H[2]…,H[n]相伴隨機出現,且已知條件概率P(A|H[i]),求P(H[i]|A)。

(10)貝葉斯發展歷史擴展閱讀

先驗概率區別

1、先驗概率不是根據有關自然狀態的全部資料測定的,而只是利用現有的材料(主要是歷史資料)計算的;後驗概率使用了有關自然狀態更加全面的資料,既有先驗概率資料,也有補充資料;

2、先驗概率的計算比較簡單,沒有使用貝葉斯公式;而後驗概率的計算,要使用貝葉斯公式,而且在利用樣本資料計算邏輯概率時,還要使用理論概率分布,需要更多的數理統計知識。

閱讀全文

與貝葉斯發展歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296