① 數學是怎麼產生的,它的發展歷史是什麼
產生:數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題
數學的發展史大致可以分為四個時期。
1、第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
2、第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
3、第三時期
變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。
4、第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
(1)數學歷史與發展擴展閱讀:
發展過程中研究出的數學成果:
1、李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為李氏恆定式。
2、華氏定理
華氏定理是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
② 數學的發展史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展。
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。
(2)數學歷史與發展擴展閱讀:
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
參考資料來源:網路-數學
③ 數學的發展歷史
數學史上的三次危機
無理數的發現──第一次數學危機 大約公元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、音樂稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。 到了公元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於1872年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。 第一次數學危機對古希臘的數學觀點有極大沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!
無窮小是零嗎?──第二次數學危機18世紀,微分法和積分法在生產和實踐上都有了廣泛而成功的應用,大部分數學家對這一理論的可靠性是毫不懷疑的。 1734年,英國哲學家、大主教貝克萊發表《分析學家或者向一個不信正教數學家的進言》,矛頭指向微積分的基礎--無窮小的問題,提出了所謂貝克萊悖論。他指出:"牛頓在求xn的導數時,採取了先給x以增量0,應用二項式(x+0)n,從中減去xn以求得增量,並除以0以求出xn的增量與x的增量之比,然後又讓0消逝,這樣得出增量的最終比。這里牛頓做了違反矛盾律的手續──先設x有增量,又令增量為零,也即假設x沒有增量。"他認為無窮小dx既等於零又不等於零,召之即來,揮之即去,這是荒謬,"dx為逝去量的靈魂"。無窮小量究竟是不是零?無窮小及其分析是否合理?由此而引起了數學界甚至哲學界長達一個半世紀的爭論。導致了數學史上的第二次數學危機。
18世紀的數學思想的確是不嚴密的,直觀的強調形式的計算而不管基礎的可靠。其中特別是:沒有清楚的無窮小概念,從而導數、微分、積分等概念也不清楚,無窮大概念不清楚,以及發散級數求和的任意性,符號的不嚴格使用,不考慮連續就進行微分,不考慮導數及積分的存在性以及函數可否展成冪級數等等。
直到19世紀20年代,一些數學家才比較關注於微積分的嚴格基礎。從波爾查諾、阿貝爾、柯西、狄里赫利等人的工作開始,到威爾斯特拉斯、戴德金和康托的工作結束,中間經歷了半個多世紀,基本上解決了矛盾,為數學分析奠定了嚴格的基礎。
悖論的產生---第三次數學危機
數學史上的第三次危機,是由1897年的突然沖擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由於在康托的一般集合理論的邊緣發現悖論造成的。由於集合概念已經滲透到眾多的數學分支,並且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。
1897年,福爾蒂揭示了集合論中的第一個悖論。兩年後,康托發現了很相似的悖論。1902年,羅素又發現了一個悖論,它除了涉及集合概念本身外不涉及別的概念。羅素悖論曾被以多種形式通俗化。其中最著名的是羅素於1919年給出的,它涉及到某村理發師的困境。理發師宣布了這樣一條原則:他給所有不給自己刮臉的人刮臉,並且,只給村裡這樣的人刮臉。當人們試圖回答下列疑問時,就認識到了這種情況的悖論性質:"理發師是否自己給自己刮臉?"如果他不給自己刮臉,那麼他按原則就該為自己刮臉;如果他給自己刮臉,那麼他就不符合他的原則。
羅素悖論使整個數學大廈動搖了。無怪乎弗雷格在收到羅素的信之後,在他剛要出版的《算術的基本法則》第2卷末尾寫道:"一位科學家不會碰到比這更難堪的事情了,即在工作完成之時,它的基礎垮掉了,當本書等待印出的時候,羅素先生的一封信把我置於這種境地"。於是終結了近12年的刻苦鑽研。
承認無窮集合,承認無窮基數,就好像一切災難都出來了,這就是第三次數學危機的實質。盡管悖論可以消除,矛盾可以解決,然而數學的確定性卻在一步一步地喪失。現代公理集合論的大堆公理,簡直難說孰真孰假,可是又不能把它們都消除掉,它們跟整個數學是血肉相連的。所以,第三次危機表面上解決了,實質上更深刻地以其它形式延續著。
具體詳見www.ghzx.com.cn/oldjyz/shuxue/shuxuechangs/fzs.htm
④ 高等數學的歷史發展
一般認為,世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取復數值的復變數和向量、張量形式的,以及各種幾何量、代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(概率)空間——范疇和隨機過程。描述變數間依賴關系的概念由函數發展到泛函、變換以至於函子。與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就是說,幾何是將各種空間形式置於變換之下來來研究的。
無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮和實無窮兩種形式出現。在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函數的極限。數學分析以它為基礎,建立了刻畫函數局部和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究對象本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。這是數學中的實無窮。能夠處理這類無窮集合,是數學水平與能力提高的表現。為了處理這類無窮集合,數學中引進了各種結構,如代數結構、序結構和拓撲結構。另外還有一種度量結構,如抽象空間中的范數、距離和測度等,它使得個體之間的關系定量化、數字化,成為數學的定性描述和定量計算兩方面的橋梁。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。
數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的復雜計算問題。
除了數學基礎、集合論、數理邏輯這樣一些基礎性學科之外,數學分為初等數學與高等數學兩大部分。它們有共同的基礎,而彼此之間並沒有嚴格的界限。它們都是人類文明在不同發展階段的產物,但並不像某些事物那樣,後發展起來的可以代替古老的,隨著人類文明的進步,數學中某些局部的、繁瑣的成果或工作可能被淘汰,而其總體仍然是有用的,並必將向著更加綜合和抽象、結構更多樣化的方向發展下去。
⑤ 數學的發展簡史
數學的發展史大來致可自以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
⑥ 數學發展的歷史
很難確切地說數學發生在何時何地。
人類最初的數和形的觀念,可以遠溯到舊石器時代,在這個時期的數十萬年時間內,人類那時還處在穴居狀態,生活和動物相差不多。以後隨著人類為了生存,需要尋找賴以生存的食物,於是就有打漁和狩獵等活動,在圍獵與生存的斗爭中,人類逐步發展了語言和早期的繪畫,這加強了人類的相互交往與聯絡感情,有了一些簡單的思維形式,但在這樣一個漫長的時期中,還沒有文字,庚談不上數學的概念。
直到距今大約一萬年以前,當時覆蓋在亞洲、歐洲的水源開始融化,地球上出現了森林和沙漠,於是尋找生存的食物和游牧生活也就慢慢地結束了,漁人和獵人逐漸在土地上定居下來,成為原始的靠農業生存的原始的農人,在水草豐滿的牧區,當然也招引了大批的游牧民,從事畜牧業成為早期的牧民,在沿海一帶,人類逐漸聚居,從事航運和貿易的事業。人類的勞動逐漸地形成了一些區分,從僅僅為生存而採集食物到主動向自然界開挖潛力,發展農業、漁業、畜牧業和其它的各項生產,人類從此進入了新石器時代。
游牧民族為了確定季節,首先需要從天象來找到答案,天文學就成為一種不可缺少的需要,而天文學只有藉助數學才能發展。因為天文學是一門以科學方法研究日月星辰的學問。數千年前,居住在現金伊拉克地方的人們深信,行星是法力高強的神祗,會主宰人的生活,認為將他們在天空中運行的情形卻是記錄下來,對人類生活關系非常重要,因此近乎狂熱地對天體進行觀測,研究天文學。在我國由於農業和畜牧業的發展需要,特別是農作物的下種、收獲,需要通過天象觀測來制訂歷法,在世界上還從來沒有一個國家象我國那樣,從研究天文開始,制訂了一百多種歷法,實際使用過的也有四十多種,而歷法的制訂,沒有數學的觀測計算是不行的。
因此,古代的巴比倫人和加爾底亞人以及居住在中國土地上的中國人,就產生了最早的天文學家、歷法家和數學家,在我國,不少歷法家實際上也是數學家,象劉徽、祖沖之等
由於農業、畜牧業、漁業等生產的發展,促進了貿易的發展,於是商業自然產生,帶來了貨幣制度,計數、計量、進位制,有了數字、計算工具與計算方法,算術就逐步形成。
恩格斯很概括地說明了數學的起源:數學是從人的需要中產生的,是從丈量土地和測量容積,從計算時間和製造器皿產生的。
陳 景 潤( 1933 ~ )
數學家, 中 國 科 學 院 院 士。 1933 年 5 月 22 日 生 於 福 建 福 州。 1953 年 畢 業 於 廈 門 大 學 數 學 系。 1957 年 進 入 中 國 科 學 院 數 學 研 究 所 並 在 華 羅 庚 教 授 指 導 下 從事 數 論 方 面 的 研 究。 歷 任 中 國 科 學 院 數 學 研 究 所 研 究 員、 所 學 術 委 員 會 委 員 兼 貴 陽 民 族 學 院、 河南 大 學、 青 島 大 學、 華 中 工 學 院、 福 建 師 范 大 學 等 校 教 授, 國 家 科 委 數 學 學 科 組 成 員, 《數 學 季 刊》主 編 等 職。 主 要 從 事 解 析 數 論 方 面 的 研 究, 並 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 國 際 領 先 的 成 果。 這一 成 果 國 際 上 譽 為 「陳 氏 定 理」, 受 到 廣 泛 引 用。 這 項 工 作, 使 之 與 王 元 教 授、 潘 承 洞 教 授 共 同 獲得 1978 年 國 家 自 然 科 學 獎 一 等 獎。 其 後 對 上 述 定 理 又 作 了 改 進, 並 於 1979 年 初 完 成 論 文 《算 術級 數 中 的 最 小 素 數》, 將 最 小 素 數 從 原 有 的 80 推 進 到 16 , 受 到 國 際 數 學 界 好 評。 對 組 合 數 學 與現 代 經 濟 管 理、 科 學 實 驗、 尖 端 技 術、 人 類 生 活 密 切 關 系 等 問 題 也 作 了 研 究。 發 表 研 究 論 文 70 余篇, 並 有 《數 學 趣 味 談》、 《組 合 數 學》 等 著 作。
華 羅 庚( 1910 ~ 1985 )
數 學 家, 中 國 科 學 院 院 士。 1910 年 11 月 12 日 生 於 江 蘇金 壇, 1985 年 6 月 12 日 卒 於 日 本 東 京。
1924 年 金 壇 中 學 初 中 畢 業, 後 刻 苦 自 學。 1930 年 後 在 清 華 大 學 任 教。 1936 年 赴 英 國 劍 橋 大 學 訪 問、 學 習。 1938 年 回 國 後 任 西 南 聯 合 大 學 教 授。 1946 年 赴 美 國, 任 普林 斯 頓 數 學 研 究 所 研 究 員、 普 林 斯 頓 大 學 和 伊 利 諾 斯 大 學 教 授, 1950 年 回 國。 歷 任 清 華 大 學 教授, 中 國 科 學 院 數 學 研 究 所、 應 用 數 學 研 究 所 所 長、 名 譽 所 長, 中 國 數 學 學 會 理 事 長、 名 譽 理 事 長,全 國 數 學 競 賽 委 員 會 主 任, 美 國 國 家 科 學 院 國 外 院 士, 第 三 世 界 科 學 院 院 士, 聯 邦 德 國 巴 伐 利 亞科 學 院 院 士, 中 國 科 學 院 物 理 學 數 學 化 學 部 副 主 任、 副 院 長、 主 席 團 成 員, 中 國 科 學 技 術 大 學 數學 系 主 任、 副 校 長, 中 國 科 協 副 主 席, 國 務 院 學 位 委 員 會 委 員 等 職。 曾 任 一 至 六 屆 全 國 人 大 常 務委 員, 六 屆 全 國 政 協 副 主 席。 曾 被 授 予 法 國 南 錫 大 學、 香 港 中 文 大 學 和 美 國 伊 利 諾 斯 大 學 榮 譽 博士 學 位。 主 要 從 事 解 析 數 論、 矩 陣 幾 何 學、 典 型 群、 自 守 函 數 論、 多 復 變 函 數 論、 偏 微 分 方 程、 高 維數 值 積 分 等 領 域 的 研 究 與 教 授 工 作 並 取 得 突 出 成 就。 40 年 代, 解 決 了 高 斯 完 整 三 角 和 的 估 計 這一 歷 史 難 題, 得 到 了 最 佳 誤 差 階 估 計 (此 結 果 在 數 論 中 有 著 廣 泛 的 應 用); 對 G.H.哈 代 與 J.E.李特 爾 伍 德 關 於 華 林 問 題 及 E.賴 特 關 於 塔 里 問 題 的 結 果 作 了 重 大 的 改 進, 至 今 仍 是 最 佳 紀 錄。
在 代 數 方 面, 證 明 了 歷 史 長 久 遺 留 的 一 維 射 影 幾 何 的 基 本 定 理; 給 出 了 體 的正 規 子 體 一 定 包 含 在 它 的 中 心 之 中 這 個 結 果 的 一 個 簡 單 而 直 接 的 證 明, 被 稱 為 嘉 當-布 饒 爾-華 定 理。其 專 著 《堆 壘 素 數 論》 系 統 地 總 結、 發 展 與 改 進 了 哈 代 與 李 特 爾 伍 德圓 法、 維 諾 格 拉 多 夫 三 角 和 估 計 方 法 及 他 本 人 的 方 法, 發 表 40 余 年 來 其 主 要 結 果 仍 居 世 界 領 先地 位, 先 後 被 譯 為 俄、 匈、 日、 德、 英 文 出 版, 成 為 20 世 紀 經 典 數 論 著 作 之 一。 其 專 著 《多 個 復 變 典型 域 上 的 調 和 分 析》 以 精 密 的 分 析 和 矩 陣 技 巧, 結 合 群 表 示 論, 具 體 給 出 了 典 型 域 的 完 整 正 交 系,從 而 給 出 了 柯 西 與 泊 松 核 的 表 達 式。 這 項 工 作 在 調 和 分 析、 復 分 析、 微 分 方 程 等 研 究 中 有 著 廣 泛深 入 的 影 響, 曾 獲 中 國 自 然 科 學 獎 一 等 獎。 倡 導 應 用 數 學 與 計 算 機 的 研 制, 曾 出 版 《統 籌 方 法 平話》、 《優 選 學》 等 多 部 著 作 並 在 中 國 推 廣 應 用。 與 王 元 教 授 合 作 在 近 代 數 論 方 法 應 用 研 究 方 面 獲重 要 成 果, 被 稱 為 「華-王 方 法」。 在 發 展 數 學 教 育 和 科 學 普 及 方 面 做 出 了 重 要 貢 獻。 發 表 研 究 論 文 200 多 篇, 並 有 專 著 和 科 普 性 著 作 數 十 種.
⑦ 數學發展史"簡介"
數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。 中國古代數學的萌芽 原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。 西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。 商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。 公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為」六藝」之一的數已經開始成為專門的課程。 春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。 戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出」矩不方,規不可以為圓」,把」大一」(無窮大)定義為」至大無外」,」小一」(無窮小)定義為」至小無內」。還提出了」一尺之棰,日取其半,萬世不竭」等命題。 而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。 墨家不同意」一尺之棰」的命題,提出一個」非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的」非半」,這個」非半」就是點。 名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。 中國古代數學體系的形成 秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。 《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。 《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。 這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。 《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。 中國古代數學的發展 魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。 趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的」勾股圓方圖及注」和」日高圖及注」是十分重要的數學文獻。在」勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在」日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。 劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行」析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為157/50和3927/1250。 劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。 東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次方程的解法等。 據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久; 祖沖之之子祖(日恆)總結了劉徽的有關工作,提出」冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理,解決了劉徽尚未解決的球體積公式。 隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。 唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。 算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是」珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。 唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。 中國古代數學的繁榮 960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。 從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。 從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九章演算法纂類》中載有賈憲」增乘開平方法」、」增乘開立方法」;在《詳解九章演算法》中載有賈憲的」開方作法本源」圖、」增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。 把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中」田畝比類乘除捷法」卷,介紹了原書中22個二次方程和1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。 元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在」綴術推星」題、朱世傑在《四元玉鑒》」如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的內插公式。 用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。 從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。 朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。 勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個容圓公式,大大豐富了中國古代幾何學的內容。 已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。 中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元代。 宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,」通神明」的數學是不存在的,只有」經世務類萬物」的數學;莫若在《四元玉鑒》序文中提出的」用假象真,以虛問實」則代表了高度抽象思維的思想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑是促進數學發展的重要因素。 中西方數學的融合 中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考試制度。在這種情況下,除珠算外,數學發展逐漸衰落。 16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。 從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭必需用品列入一般的木器傢具手冊中。 隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大位的著作在國內外流傳很廣,影響很大。 1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同時介紹進來。 在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它」不必疑」、」不必改」,」舉世無一人不當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。 其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有這些,在當時歷法工作中都是隨譯隨用的。 1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。 清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現了生機。年希堯的《視學》是中國第一部介紹西方透視學的著作。 清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。1721年完成《律歷淵源》100卷,以康熙」御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等數學網路全書,並有康熙」御定」的名義,因此對當時數學研究有一定影響。 綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。 雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主的乾嘉學派。 隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨立得到的。 與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記-《疇人傳》,收集了從黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹西方天文數學的傳教士41人。這部著作全由」掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一手的原始資料,在學術界頗有影響。 1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展」洋務運動」,也主張介紹和學習西方數學,組織翻譯了一批近代數學著作。 其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。 《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。 在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思想的研究成果。 由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的研究才真正開始。 近現代數學發展時期 這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。 中國近3年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來(1915年轉留法),1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學(今南京大學)和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵(1927)、陳省身(1934)、華羅庚(1936)、許寶騄(1936)等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素(1920),美國的伯克霍夫(1934)、奧斯古德(1934)、維納(1935),法國的阿達馬(1936)等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年《中國數學會學報》和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騄在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。 1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊(1952年改為《數學學報》),1951年10月《中國數學雜志》復刊(1953年改為《數學通報》)。1951年8月中國數學會召開建國後第一次全國代表大會,討論了數學發展方向和各類學校數學教學改革問題。 建國後的數學研究取現代數學開始於清末民初的留學活動。較早出國學習數學的有:190得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》(1953)、蘇步青的《射影曲線概論》(1954)、陳建功的《直角函數級數的和》(1954)和李儼的《中算史論叢》(5輯,1954-1955)等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。 60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。 1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
⑧ 數學發展歷史
奇普,印加帝國時所使用的計數工具。數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικός(mathematikós)意思是「學問的基礎」,源於μάθημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」
⑨ 數學的有怎樣的發展歷史
我國古代數學發軔於原始公社末期,當時私有制和貨物交換產生以後,數與形的概念有了進一步的發展,已開始用文字元號取代結繩記事了。
春秋戰國時期,籌算記數法已使用十進位值制,人們已諳熟九九乘法表?整數四則運算,並使用了分數。西漢時期《九章算術》的出現,為我國古代數學體系的形成起到了奠基作用。
春秋時期,有一個宋國人,在路上行走時撿到了一個別人遺失的契據,拿回家收藏了起來。他秘密地數了數那契據上的齒,然後告訴鄰居說:「我發財的日子就要來到了!」
契據上的齒就是木刻上的缺口或刻痕,表示契據所代表的實物的價值。當人類沒有發明文字,或文字使用尚不普遍時,常用在木片?竹片或骨片上刻痕的方法來記錄數字?事件或傳遞信息,統稱為「刻木記事」。
我國少數民族曾經使用木刻記事的,有獨龍族?傈僳族?佤族?景頗族?哈尼族?拉祜族?苗族?瑤族?鄂倫春族?鄂溫克族?珞巴族等。如佤族用木刻計算日子和賬目;苗族用木刻記錄歌詞;景頗族用木刻記錄下村寨之間的糾紛;哈尼族用木刻作為借貸?離婚?典當土地的契約;獨龍族用遞送木刻傳達通知等。凡是通知性木刻,其上還常附上雞毛?火炭?辣子等表意物件,用以強調事情的緊迫性。
其實,早在《列子·說符》記載的故事之前,我們的先民在從野蠻走向文明的漫長歷程中有了數與形的概念。
出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有3個著地點,這都是幾何知識的萌芽。說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。
殷商甲骨文中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一?十?百?千?萬,各有專名。其中已經蘊含有十進位置值制萌芽。
傳說大禹治水時,便左手拿著准繩,右手拿著規矩丈量大地。因此,我們可以說,「規」?「矩」?「准」?「繩」是我們祖先最早使用的數學工具。
人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制訂歷法,都需要數學知識。在約成書於公元前1世紀的《周髀算經》中,記載了西周商高和周公答問之間涉及的勾股定理內容。
有一次,周公問商高:「古時做天文測量和訂立歷法,天沒有台階可以攀登上去,地又不能用尺寸去測量,請問數是怎樣得來的?」商高回答說:「數是根據圓和方的道理得來的,圓從方來,方又從矩來。矩是根據乘?除計算出來的。」這里的「矩」原是指包含直角的作圖工具。這說明了「勾股測量術」,即可用3∶4∶5的辦法來構成直角三角形。
《周髀算經》中有「勾股各自乘,並而開方除之」的記載,這已經是勾股定理的一般形式了,說明當時已普遍使用了勾股定理。勾股定理是我國數學家的獨立發明。
《禮記·內則》提到過,西周貴族子弟從9歲開始便要學習數目和記數方法,他們要受禮?樂?射?馭?書?數的訓練,作為「六藝」之一的「數」已經開始成為專門的課程。
籌算記數法對世界數學的發展具有劃時代意義。這個時期的測量數學在生產上有了廣泛應用,在數學上也有相應地提高。
戰國時期,隨著鐵器的出現,生產力的提高,我國開始了由奴隸制向封建制的過渡,新的生產關系促進了科學技術的發展與進步,此時私學開始出現。
秦漢時期,社會生產力得到恢復和發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形?重差等新的數學方法。
同時,人們注重先秦文化典籍的收集?整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書,據東漢初鄭眾記載,當時的數學知識分成了方田?粟米?差分?少廣?商功?均輸?方程?贏不足?旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
《九章算術》集先秦至西漢數學知識之大成,是我國古代最重要的數學經典,對兩漢時期以及後來數學的發展產生了很大的影響。它是西漢丞相張蒼?天文學家耿壽昌收集秦火遺殘,加以整理刪補而成的。
《漢書·藝文志》所載《許商算術》?《杜忠算術》就是研究《九章算術》的作品。東漢時期馬續?張衡?劉洪?鄭玄?徐岳?王粲等通曉《九章算術》,也為之作注。這些著作的問世,推動了稍後的數學理論體系的建立。
《九章算術》的出現,奠定了我國古代數學的基礎,它的框架?形式?風格和特點深刻影響了我國和東方的數學。
刻木記事
⑩ 中國數學歷史的發展
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。