㈠ 單晶,多晶硅,薄膜電池發展歷程及各種太陽能電池的有缺點 近幾年轉換效率
1)單晶硅太陽能電池
單晶硅太陽能電池的光電轉換效率為15%左右,最高的達到24%,這是目前所有種類的太陽能電池中光電轉換效率最高的,但製作成本很大,以致於它還不能被大量廣泛和普遍地使用。由於單晶硅一般採用鋼化玻璃以及防水樹脂進行封裝,因此其堅固耐用,使用壽命一般可達15年,最高可達25年。
(2)多晶硅太陽能電池
多晶硅太陽電池的製作工藝與單晶硅太陽電池差不多,但是多晶硅太陽能電池的光電轉換效率則要降低不少,其光電轉換效率約12%左右 (2004年7月1日日本夏普上市效率為14.8%的世界最高效率多晶硅太陽能電池)。 從製作成本上來講,比單晶硅太陽能電池要便宜一些,材料製造簡便,節約電耗,總的生產成本較低,因此得到大量發展。此外,多晶硅太陽能電池的使用壽命也要比單晶硅太陽能電池短。從性能價格比來講,單晶硅太陽能電池還略好。
(3)非晶硅太陽能電池
非晶硅太陽電池是1976年出現的新型薄膜式太陽電池,它與單晶硅和多晶硅太陽電池的製作方法完全不同,工藝過程大大簡化,硅材料消耗很少,電耗更低,它的主要優點是在弱光條件也能發電。但非晶硅太陽電池存在的主要問題是光電轉換效率偏低,目前國際先進水平為10%左右,且不夠穩定,隨著時間的延長,其轉換效率衰減。 (4)多元化合物太陽電池 多元化合物太陽電池指不是用單一元素半導體材料製成的太陽電池。現在各國研究的品種繁多,大多數尚未工業化生產,主要有以下幾種:a) 硫化鎘太陽能電池b) 砷化鎵太陽能電池c) 銅銦硒太陽能電池(新型多元帶隙梯度Cu(In, Ga)Se2薄膜太陽能電池) Cu(In, Ga)Se2是一種性能優良太陽光吸收材料,具有梯度能帶間隙(導帶與價帶之間的能級差)多元的半導體材料,可以擴大太陽能吸收光譜范圍,進而提高光電轉化效率。以它為基礎可以設計出光電轉換效率比硅薄膜太陽能電池明顯提高的薄膜太陽能電池。可以達到的光電轉化率為18%,而且,此類薄膜太陽能電池到目前為止,未發現有光輻射引致性能衰退效應(SWE),其光電轉化效率比目前商用的薄膜太陽能電池板提高約50~75%,在薄膜太陽能電池中屬於世界的最高水平的光電轉化效率。
光伏發電是利用半導體界面的光生伏特效應而將光能直接轉變為電能的一種技術。這種技術的關鍵元件是太陽能電池。太陽能電池經過串聯後進行封裝保護可形成大面積的太陽電池組件,再配合上功率控制器等部件就形成了光伏發電裝置。光伏發電的優點是較少受地域限 制,因為陽光普照大地;光伏系統還具有安全可靠、無雜訊、低污染、無需消耗燃料和架設輸電線路即可就地發電供電及建設同期短的優點。 光伏發電是根據光生伏特效應原理,利用太陽能電池將太陽光能直接轉化為電能。不論是獨立使用還是並 網發電,光伏發電系統主要由太陽能電池板(組件)、控制器和逆變器三大部分組成,它們主要由電子元器件構成,不涉及機械部件,所以,光伏發電設備極為精 煉,可靠穩定壽命長、安裝維護簡便。理論上講,光伏發電技術可以用於任何需要電源的場合,上至航天器,下至家用電源,大到兆瓦級電站,小到玩具,光伏電源 無處不在。太陽能光伏發電的最基本元件是太陽能電池(片),有單晶硅、多晶硅、非晶硅和薄膜電池等。目前,單晶和多晶電池用量最大,非晶電池用於一些小系 統和計算器輔助電源等。 國產晶體硅電池效率在10至13%左右,國外同類產品效率約18至23%。由一個或多個太陽能電池 片組成的太陽能電池板稱為光伏組件。目前,光伏發電產品主要用於三大方面:一是為無電場合提供電源,主要為廣大無電地區居民生活生產提供電力,還有微波中 繼電源、通訊電源等,另外,還包括一些移動電源和備用電源;二是太陽能日用電子產品,如各類太陽能充電器、太陽能路燈和太陽能草坪燈等;三是並網發電,這 在發達國家已經大面積推廣實施。我國並網發電還未起步,不過,2008年北京奧運會部分用電將會由太陽能發電和風力發電提供。
㈡ 太陽能電池是怎麼發展的
當電力、煤炭、石油等不可再生能源頻頻告急,能源問題日益成為制約國際社會經濟發展的瓶頸時,越來越多的國家開始實行「陽光計劃」,開發太陽能資源,尋求經濟發展的新動力。歐洲一些高水平的核研究機構也開始轉向可再生能源。在國際光伏市場巨大潛力的推動下,各國的太陽能電池製造業爭相投入巨資,擴大生產,以爭一席之地。
全球太陽能電池產業1994-2004年10年裡增長了17倍,太陽能電池生產主要分布在日本、歐洲和美國。2006年全球太陽能電池安裝規模已達1744MW,較2005年成長19%,整個市場產值已正式突破100億美元大關。2007年全球太陽能電池產量達到3436MW,較2006年增長了56%。
中國對太陽能電池的研究起步於1958年,20世紀80年代末期,國內先後引進了多條太陽能電池生產線,使中國太陽能電池生產能力由原來的3個小廠的幾百kW一下子提升到4個廠的4.5MW,這種產能一直持續到2002年,產量則只有2MW左右。2002年後,歐洲市場特別是德國市場的急劇放大和無錫尚德太陽能電力有限公司的橫空出世及超常規發展給中國光伏產業帶來了前所未有的發展機遇和示範效應。
目前,我國已成為全球主要的太陽能電池生產國。2007年全國太陽能電池產量達到1188MW,同比增長293%。中國已經成功超越歐洲、日本為世界太陽能電池生產第一大國。在產業布局上,我國太陽能電池產業已經形成了一定的集聚態勢。在長三角、環渤海、珠三角、中西部地區,已經形成了各具特色的太陽能產業集群。
中國的太陽能電池研究比國外晚了20年,盡管最近10年國家在這方面逐年加大了投入,但投入仍然不夠,與國外差距還是很大。政府應加強政策引導和政策激勵,盡快解決太陽能發電上網與合理定價等問題。同時可借鑒國外的成功經驗,在公共設施、政府辦公樓等領域強制推廣使用太陽能,充分發揮政府的示範作用,推動國內市場盡快起步和良性發展。
太陽能光伏發電在不遠的將來會占據世界能源消費的重要席位,不但要替代部分常規能源,而且將成為世界能源供應的主體。預計到2030年,可再生能源在總能源結構中將佔到30%以上,而太陽能光伏發電在世界總電力供應中的佔比也將達到10%以上;到2040年,可再生能源將占總能耗的50%以上,太陽能光伏發電將占總電力的20%以上;到21世紀末,可再生能源在能源結構中將佔到80%以上,太陽能發電將佔到60%以上。這些數字足以顯示出太陽能光伏產業的發展前景及其在能源領域重要的戰略地位。由此可以看出,太陽能電池市場前景廣闊。
㈢ 光電池的發展歷史
1839年,安托石-貝克雷爾製造出了最早的光電池。貝克雷爾電池是一個圓柱體,內裝硝版酸鉛溶液,溶液中權進入一個鉛陽極和一個氧化銅陰極。這種電池一經陽光照射,就會供給電流。
1875年,德國技師維爾納-西門子是製成第一個硒光電池,並提議用於光量測定。西門子的光電池是根據1873年英國人史密斯發現的「內光電效應」提出的。
L.H.亞當斯於1876年指出,硒在光的作用下,不僅出現電阻的變化,而且在一定條件下還出現電動勢,從而發現了「阻擋層效應」。阻擋層效應則成了光電池的基本原理。光電池被廣泛地用於自動控制技術、信息電子學和測量技術。這些元件的性能約自1950年起,因半導體技術的發展而得到顯著改善。
㈣ 太陽能電池的歷史
術語「光生伏特(Photovoltaics)」來源於希臘語,意思是光、伏特和電氣的,來源於義大利物理學家亞歷山德羅·伏特的名字,在亞歷山德羅·伏特以後「伏特」便作為電壓的單位使用。
以太陽能發展的歷史來說,光照射到材料上所引起的「光起電力」行為,早在19世紀的時候就已經發現了。
1839年,光生伏特效應第一次由法國物理學家A.E.Becquerel發現。1849年術語「光-伏」才出現在英語中。
1883年第一塊太陽電池由Charles Fritts制備成功。Charles用硒半導體上覆上一層極薄的金層形成半導體金屬結,器件只有1%的效率。
到了20世紀30年代,照相機的曝光計廣泛地使用光起電力行為原理。
1946年Russell Ohl申請了現代太陽電池的製造專利。
到了20世紀50年代,隨著半導體物性的逐漸了解,以及加工技術的進步,1954年當美國的貝爾實驗室在用半導體做實驗發現在硅中摻入一定量的雜質後對光更加敏感這一現象後,第一個太陽能電池在1954年誕生在貝爾實驗室。太陽電池技術的時代終於到來。
自20世紀58年代起,美國發射的人造衛星就已經利用太陽能電池作為能量的來源。
20世紀70年代能源危機時,讓世界各國察覺到能源開發的重要性。
1973年發生了石油危機,人們開始把太陽能電池的應用轉移到一般的民生用途上。
在美國、日本和以色列等國家,已經大量使用太陽能裝置,更朝商業化的目標前進。
在這些國家中,美國於1983年在加州建立世界上最大的太陽能電廠,它的發電量可以高達16百萬瓦特。南非、波札那、納米比亞和非洲南部的其他國家也設立專案,鼓勵偏遠的鄉村地區安裝低成本的太陽能電池發電系統。
而推行太陽能發電最積極的國家首推日本。1994年日本實施補助獎勵辦法,推廣每戶3,000瓦特的「市電並聯型太陽光電能系統」。在第一年,政府補助49%的經費,以後的補助再逐年遞減。「市電並聯型太陽光電能系統」是在日照充足的時候,由太陽能電池提供電能給自家的負載用,若有多餘的電力則另行儲存。當發電量不足或者不發電的時候,所需要的電力再由電力公司提供。到了1996年,日本有2,600戶裝置太陽能發電系統,裝設總容量已經有8百萬瓦特。一年後,已經有9,400戶裝置,裝設的總容量也達到了32百萬瓦特。隨著環保意識的高漲和政府補助金的制度,預估日本住家用太陽能電池的需求量,也會急速增加。
在中國,太陽能發電產業亦得到政府的大力鼓勵和資助。2009年3月,財政部宣布擬對太陽能光電建築等大型太陽能工程進行補貼。
㈤ 薄膜太陽能電池的發展歷史
http://www.sinoshu.com/cx/bookdetail.asp?typeid=2&id=676998&bookname=%B8%DF%B7%D6%D7%D3%D0%C2%B2%C4%C1%CF%B4%D4%CA%E9--%B8%DF%B7%D6%D7%D3%B5%E7%B3%D8%B2%C4%C1%CF
高分子新材料叢書回--高分子電池答材料
㈥ 太陽能光伏電池是什麼時候發明的
太陽光發電的歷史可以追溯到1800年,貝克勒爾發現對某種半導體材料照射光後,會引起其伏安特性改變。最終,發現了光伏效應,並以此半導體製成太陽能光伏電池。1876年,英國科學家亞當斯等在研究半導體材料時發現了硒的光伏效應。1884年,美國科學家查爾斯製成了硒太陽能光伏電池,其轉換效率很低,僅有1%。其後,對氧化銅等半導體材料研究,同樣發現有光伏效應,所以也製成了以氧化銅等半導體材料為原料的太陽能光伏電池。
1954年,美國貝爾實驗室的皮爾松、佛朗等三名科學家利用硅晶體材料開發出性能良好的太陽能光伏電池,其轉換效率達6%,經過不斷改良後,成為現在的硅太陽能光伏電池。
太陽能光伏電池是1958年開始得到應用的。當時前蘇聯發射了人造衛星,美國也發射了人造衛星,在太空領域上,展開了激烈的競爭。前蘇聯發射的人造衛星使用的是原子能電池,美國發射的先驅者1號通信衛星採用的就是太陽能光伏電池。
由於太陽能光伏電池的價格特別高(高達1500美元/w),而且剛開始性能還不穩定,因此僅用於航天器。到了20世紀60年代初才慢慢趨於穩定,70年代開始在航天器上大量使用。太陽能光伏電池的性能雖然已穩定,但價格還是很高,所以直到20世紀70年代初太陽能光伏電池還沒有得到廣泛應用,只可用於航天器、人造衛星、山頂上的差轉電台、海上航標燈、海島燈塔電源等,一些不計成本,必須用的場所。
到了1973年後,在石油危機的推動下,太陽能光伏電池進入了蓬勃發展時期,太陽能光伏電池開始在地面使用,而且地面用太陽能光伏電池的數量很快就大大超過了在航天器上的使用量。這個時期,不但出現了許多新型電池,而且因為引進了許多新技術,出現了鈍化技術、減反射技術、絨面技術、背表面場技術、異質結太陽能電池技術及聚光電池等非常有效的新技術。
1976年,美國ca公司的卡爾松發明了非晶硅太陽能光伏電池。該電池的轉換效率雖低於單晶硅,但製造時可以任意選配電壓電流比。
太陽能光伏電池的應用,到了20世紀80年代就比較廣泛了,特別是在民用電器上得到了廣泛應用,如太陽能計算器、太陽能手錶和太陽能手機充電器等。
這主要有兩個原因:一個是半導體集成電路的發展,使得電子產品消耗的電量大幅度下降,在室內燈光下,太陽能光伏電池也能產生電力,可以充分地使計算器等電子產品正常工作;另一個原因是電子產品工作所必需的電壓能從一個基片上得到,這樣一種新的集成型非晶硅太陽能光伏電池可以便宜地製造。太陽能光伏電池計算器實用化後,從手錶開始,逐漸推廣到各種電子產品的應用。
太陽能光伏電池除了可以用簡單的裝置就能夠直接發電這一優點外,在使用時還有如下的優點。
(1)不產生對環境有不良影響的排放氣體及有害物質,沒有雜訊。
(2)不僅在太陽光下可以發電,在熒光燈、白熾燈等擴散光下也可以發電。
(3)不需要更換電池。
(4)可以直接接到dc機械上。
(5)在使用場合就可以發電。
我國的太陽能光伏電池誕生的也比較早,而且我國也是應用較早的國家之一。
1959年,我國就誕生了第一隻有實用價值的太陽能光伏電池。1971年3月太陽能光伏電池首次應用於我國第二顆人造衛星(實踐1號)。而後,1973年太陽能光伏電池首次用於浮標燈。
20世紀70年代,我國開始生產太陽能光伏電池,70年代中末期引進國外關鍵設備和成套生產線,我國太陽能光伏電池的生產產業有了進一步的發展。
㈦ 太陽能電池是誰發明的
羅門·德·考克斯
㈧ 太陽能電池的發展前景
《中國太陽能電池行業市場前瞻與投資戰略規劃分析報告》數據顯示,回我國薄膜太陽能答電池產量呈現逐年快速增長態勢,由2009年的263MW飆漲至2015年的458MW,增勢強勁。
我國太陽能電池行業的發展歷史,從1958年研製出第一片晶體硅光伏電池開始,至今已走完從無到有、由小到大的進程。不過,我國太陽能電池市場存在不少問題,阻礙著行業進一步發展。
例如,上游原料和下游應用嚴重依賴海外,國內企業未能掌握相關核心技術,導致產業議價、抗風險能力弱;此外,多晶硅產業的弱勢地位,也長期困擾著太陽能電池行業。
總的來說,隨著光伏、光熱發電產業逐漸成熟,並進入繁榮期,太陽能電池有望保持穩定增長態勢。但是,在此過程中,國內企業要持續加大技術研發,打破國外壟斷,爭取更多話語權,提升國際競爭力。
㈨ 太陽能電池技術是怎樣發展的
在電池這個家族中,有著人們熟悉的干電池、蓄電池、汞鋅電池、鎳電池等眾多的成員。值得注意的是,近年來,這個「家族」又增添了一位後來居上的年輕夥伴——太陽能電池。
太陽能電池又稱充電池或光伏電池,它是以半導體為材料,應用光——電轉換原理製成的。半導體是一種介於導體和絕緣體之間的特殊物質,兩種不同類型的半導體結合在一起,結合面就形成一個「結」,太陽能電池的奧妙就在這個「結」上。
和任何物質的原子一樣,半導體的原子也是由帶正電的原子核和帶負電的電子組成。如半導體硅原子的外層就有4個電子,按固定軌道圍繞原子核轉動。當受到外來能量的作用時,這些電子就會脫離軌道而成為自由電子,並在原來的位置上留下一個「空穴」,在純凈的硅晶體中,自由電子和空穴的數目是相等的。如果在硅晶體中摻入能夠俘獲電子的硼、鎵等元素,它就成了空穴型半導體,通常用符號P表示;如果摻入能夠釋放電子的磷、砷等元素,它就成了電子型半導體,以符號N代表。若把這兩種半導體結合,交界面便形成一個P——N結。P——N結就像一堵牆,阻礙著電子和空穴的移動。當受到陽光照射時,電子接受光能驅向N型區,使N型區帶負電,同時空穴驅於P型區,使P型區帶正電。這樣,在P——N結兩旁便產生了電動勢,也就是通常所說的電壓。科學家把這種現象叫作「光生伏打現象」。如果用導線連接P——N結兩端,便會產生電流。
1953年,美國貝爾電話公司就是應用這個原理,製成了世界上第一個硅太陽能電池。盡管當時這種電池的光電轉換效率很低,單個太陽能電池不能直接作為電源使用,需要多個太陽能電池一起作用才能獲得需要的電能。但光電池的出現,好比一道曙光,使人們的眼睛為之一亮,尤其是航天領域的科學家,對它更是注目。
衛星和宇宙飛船上的電子儀器和設備,需要足夠的持續不斷的電能,而且要求重量輕,壽命長,使用方便,能承受各種沖擊、振動的影響。太陽能電池能完全滿足這些要求,是航天事業的理想能源,而令其他所有電池相形見絀。
1958年,美國的「先鋒一號」人造衛星就是用了太陽能電池作為電源,成為世界上第一個用太陽能供電的衛星。太陽能電池一下子使衛星電源可以安全工作達20年之久,從而取代了只能連續工作幾天的化學電池。現在,各式各樣的衛星和空間飛行器上都裝上了布滿太陽能電池的「鐵翅膀」,使它們能夠在太空中長久邀游。我國1958年開始進行太陽能電池的研製工作,並於1971年將研製的太陽能電池用在了發射的第二顆衛星上,隨後,又向高效能的砷化鎵太陽能電池邁進。1991年,我國砷化鎵太陽能電池試驗成功,並在「風雲一號」氣象衛星上正常使用,使我國成為繼美、日、俄後的第四個擁有砷化鎵太陽能電池太空試驗數據的國家。
太陽能電池不僅是太空驕子,也被人們生產、生活的許多領域視為至寶。
從1974年,世界上第一架太陽能電池飛機在美國首次試飛成功以來,無污染,噪音小,節能耐用的太陽能飛機便飛速地發展起來,從飛行幾分鍾,航程幾公里到飛越英吉利海峽,航程2000多公里,只用了六七年時間。現在,最先進的太陽能飛機,飛行高度可達2萬多米,航程超過4000公里。
在建造太陽能電池發電站上,許多國家也取得了較大進展。1985年,美國阿爾康公司研製的太陽能電池發電站,用108個太陽板,256個光電池模塊,年發電能力300萬度。德國1990年建造的小型太陽能電站,光電轉換率可達30%多,適於為家庭和團體供電。1992年美國加州公用局又開始研製一種「革命性的太陽能發電裝置」,預計可供加州1/3的用電量。用太陽能電池發電確實是一種誘人的方式,據專家測算,如果能把撒哈拉沙漠太陽輻射能的1%收集起來,足夠全世界的所有能源消耗。
生活中,太陽能電池電話已在一些國家得到了應用。約旦的一些公路兩旁,常見到「頂著」太陽能電池板的電線桿,司機隨時可以使用這種太陽能電池電話。芬蘭製成了一種用太陽能電池供電的彩色電視機,太陽能電池板就裝在住家的房頂上,還配有蓄電池,保證電視機的連續供電,既節省了電能又安全可靠。日本則側重把太陽能電池應用於汽車的自動換氣裝置、空調設備等民用工業。我國的一些電視差轉台也已用太陽能電池為電源,投資省,使用方便,很受歡迎。
當前,太陽能電池的開發應用已逐步走向商業化、產業化;小功率小面積的太陽能電池在一些國家已大批量生產,並得到廣泛應用;光電轉換技術日益成熟,轉換率逐步提高;可以預見,太陽能電池——這個電池家族的後起之秀,很有可能作為替代化石燃料的重要能源,在人們的生產、生活中佔有越來越重要的位置。
㈩ 太陽能電池的起源
太陽的光輝普照大地,它是明亮的使者,太陽的光除了照亮世界,使植物通過光合作用把太陽光轉變為各種養分,供人們食用,產生纖維質供人們做衣服,生長木材給我們建築房屋以外,太陽的光還可以通過太陽能電池轉變為電.太陽能電池是一種近年發展起來的新型的電池.太陽能電池是利用光電轉換原理使太陽的輻射光通過半導體物質轉變為電能的一種器件,這種光電轉換過程通常叫做「光生伏打效應」,因此太陽能電池又稱為「光伏電池」,用於太陽能電池的半導體材料是一種介於導體和絕緣體之間的特殊物質,和任何物質的原子一樣,半導體的原子也是由帶正電的原子核和帶負電的電子組成,半導體硅原子的外層有4個電子,按固定軌道圍繞原子核轉動.當受到外來能量的作用時,這些電子就會脫離軌道而成為自由電子,並在原來的位置上留下一個「空穴」,在純凈的硅晶體中,自由電子和空穴的數目是相等的.如果在硅晶體中摻入硼、鎵等元素,由於這些元素能夠俘獲電子,它就成了空穴型半導體,通常用符號P表示;如果摻入能夠釋放電子的磷、砷等元素,它就成了電子型半導體,以符號N代表.若把這兩種半導體結合,交界面便形成一個P-N結.太陽能電池的奧妙就在這個「結」上,P-N結就像一堵牆,阻礙著電子和空穴的移動.當太陽能電池受到陽光照射時,電子接受光能,向N型區移動,使N型區帶負電,同時空穴向P型區移動,使P型區帶正電.這樣,在P-N結兩端便產生了電動勢,也就是通常所說的電壓.這種現象就是上面所說的「光生伏打效應」.如果這時分別在P型層和N型層焊上金屬導線,接通負載,則外電路便有電流通過,如此形成的一個個電池元件,把它們串聯、並聯起來,就能產生一定的電壓和電流,輸出功率.製造太陽電池的半導體材料已知的有十幾種,因此太陽電池的種類也很多.目前,技術最成熟,並具有商業價值的太陽電池要算硅太陽電池.
1953年美國貝爾研究所首先應用這個原理試製成功硅太陽電池,獲得6%光電轉換效率的成果.太陽能電池的出現,好比一道曙光,尤其是航天領域的科學家,對它更是注目.這是由於當時宇宙空間技術的發展,人造地球衛星上天,衛星和宇宙飛船上的電子儀器和設備,需要足夠的持續不斷的電能,而且要求重量輕,壽命長,使用方便,能承受各種沖擊、振動的影響.太陽能電池完全滿足這些要求,1958年,美國的「先鋒一號」人造衛星就是用了太陽能電池作為電源,成為世界上第一個用太陽能供電的衛星,空間電源的需求使太陽電池作為尖端技術,身價百倍.現在,各式各樣的衛星和空間飛行器上都裝上了布滿太陽能電池的「翅膀」,使它們能夠在太空中長久遨遊.我國1958年開始進行太陽能電池的研製工作,並於1971年將研製的太陽能電池用在了發射的第二顆衛星上.以太陽能電池作為電源可以使衛星安全工作達20年之久,而化學電池只能連續工作幾天.
空間應用范圍有限,當時太陽電池造價昂貴,發展受到限.70年代初,世界石油危機促進了新能源的開發,開始將太陽電池轉向地面應用,技術不斷進步,光電轉換效率提高,成本大幅度下降.時至今日,光電轉換已展示出廣闊的應用前景.
太陽能電池近年也被人們用於生產、生活的許多領域.從1974年世界上第一架太陽能電池飛機在美國首次試飛成功以來,激起人們對太陽能飛機研究的熱潮,太陽能飛機從此飛速地發展起來,只用了六七年時間太陽能飛機從飛行幾分鍾,航程幾公里發展到飛越英吉利海峽.現在,最先進的太陽能飛機,飛行高度可達2萬多米,航程超過4000公里.另外,太陽能汽車也發展很快.
在建造太陽能電池發電站上,許多國家也取得了較大進展.1985年,美國阿爾康公司研製的太陽能電池發電站,用108個太陽板,256個光電池模塊,年發電能力300萬度.德國1990年建造的小型太陽能電站,光電轉換率可達30%多,適於為家庭和團體供電.1992年美國加州公用局又開始研製一種「革命性的太陽能發電裝置」,預計可供加州1/3的用電量.用太陽能電池發電確實是一種誘人的方式,據專家測算,如果能把撒哈拉沙漠太陽輻射能的1%收集起來,足夠全世界的所有能源消耗.
在生產和生活中,太陽能電池已在一些國家得到了廣泛應用,在遠離輸電線路的地方,使用太陽能電池給電器供電是節約能源降低成本的好辦法.芬蘭製成了一種用太陽能電池供電的彩色電視機,太陽能電池板就裝在住家的房頂上,還配有蓄電池,保證電視機的連續供電,既節省了電能又安全可靠.日本則側重把太陽能電池應用於汽車的自動換氣裝置、空調設備等民用工業.我國的一些電視差轉台也已用太陽能電池為電源,投資省,使用方便,很受歡迎.
當前,太陽能電池的開發應用已逐步走向商業化、產業化;小功率小面積的太陽能電池在一些國家已大批量生產,並得到廣泛應用;同時人們正在開發光電轉換率高、成本低的太陽能電池;可以預見,太陽能電池很有可能成為替代煤和石油的重要能源之一,在人們的生產、生活中佔有越來越重要的位置.
光電效應與康普頓效應
我們已明確指出光的本質是電磁波,它具有波動的性質.但近代物理又證明,光除了具有波動性之外還具有另一方面的性質,即粒子性.至於光具有粒子性,最好的例證就是著名的「光電效應」和「康普頓效應」.由於光電效應與康普頓效應研究的都是光子與電子之間的相互作用,這就使有些人自然產生一個疑問:既然研究的對象相同,那麼,為什麼有時討論光電效應,有時又討論康普頓效應呢?到底兩種效應有什麼區別?有什麼聯系呢?下面我們就從光電效應的物理本質及規律,康普頓效應的物理本質及規律,光電效應與康普頓效應的關系這三個方面來回答這些問題.
1、光電效應的物理本質及規律
在麥克斯韋預言了電磁波的存在以後,為了證實電磁波的存在,德國物理學家赫茲於1887年首先發現用紫外光照射放電火花隙的負電極時,會使放電更易產生.爾後,其他物理學家都繼續對此進行了研究,發現用紫外光以及波長更短的X光照射一些金屬,同樣觀察到金屬表面有電子逸出的現象.於是,物理學家就把在光(包括不可見光)的照射下金屬表面逸出電子的現象稱為光電效應.所逸出的電子叫光電子,這一名字僅為了表示它是由於光的照射而從金屬表面飛出的這一事實.事實上它與通常的電子毫無區別.光電子的定向運動所形成的電流叫做光電流.光電效應的規律可歸納為以下幾點:
(1)飽和光電流與入射光的強度成正比,即單位時間內受光照射的電極(金屬)上釋放出來的電子數目與入射光的強度成正比.
(2)光電子的最大初動能(或遏止電壓)隨入射光的頻率線性地增加而與入射光的強度無關.
(3)當光照射某一金屬時,無論光的強度如何,照射時間多長,若入射光的頻率小於某一極限頻率,則都沒有光電子逸出,即不發生光電效應.
(4)只要光的頻率超過某一極限頻率,受光照射的金屬表面立即就會選出光電子,其時間間隔不超過 秒,幾乎是瞬時的,與入射光的強度無關.
在解釋上述光電效應的規律時,經典的波動理論遇到了不可克服的困難.為此,偉大的物理學大師——愛因斯坦於1905年提出了一個非凡的光量子假設.他認為光也具有粒子性,這些光粒子稱為光量子,簡稱光子.每個光子的能量是 ,h是普朗克常數, 是光的頻率.
按照光子假設,當光射到金屬表面時,金屬中的電子把光子的能量全部吸收,電子把這部分能量作兩種用途,一部分用來掙脫金屬對它的束縛,即用作逸出功W,餘下一部分轉換成電子離開金屬表面後的初動能 .按能量守恆與轉換定律,應有:
這就是有名的愛因斯坦光電效應方程.
利用愛因斯坦光電效應方程能圓滿地解釋光電效應諸規律.
首先,根據光子假設,入射光的強度(即單位時間內通過單位垂直面積的光能)決定於單位時間里通過單位垂直面積的光子數.當入射光的強度增加時,單位時間里通過金屬表面的光子數也就增多,於是,光子與金屬中的電子碰撞次數也增多,因而單位時間里從金屬表面逸出的光電子也增多,這些逸出的光電子全部到達陽極便形成所謂的飽和電流.所以,飽和電流與入射光強度成正比.
其次,由愛因斯坦光電效應方程可知,對於一定的金屬而言,因逸出功W一定,故光電子的最大初動 能隨入射光頻率 成線性關系而與光強度無關.
第三,由愛因斯坦光電效應方程可見,如果入射光的頻率過低,以至於 ,那麼,金屬表面就根本不會有光電子逸出,盡管是入射光強度很大.顯然,只有當入射光的頻率 時,才會有光電流出現.事實上,這里的就是光電效應規律中所說的極限頻率,又名「紅限」,各種金屬的紅限各不相同.
第四,當光子與金屬中的電子相互作用時,電子能夠一次性全部吸收掉光子的能量,因而光電效應的產生無需積累能量的時間,幾乎是一觸即發.
2、康普頓效應的物理本質及規律
一般的光散射知識告訴我們,只有當光通過光學性質不均勻的媒質時,光散射現象才會發生.但是實驗發現,當波長很短的光(電磁波),如X射線、 射線等通過不含雜質的均勻媒質時,也會產生散射現象,且一反常態,在散射光中除有與原波長 相同的射線外,還有比原波長 大的射線( )出現.這現象首先由美國物理學家康普頓於1922~1923年間發現,並作出理論解釋,故稱康普頓效應,亦稱康普頓散射.
康普頓效應的規律可歸納成如下幾點:
(1)康普頓效應中波長的改變 與原入射光波長 和散射物質無關,而與散射方向有關.當散射角(散射線與入射線之間的夾角)增大時, 也隨之增大.
(2)康普頓效應隨散射物質原子量的增大而減弱.
經典波動理論同樣解釋不了上述康普頓效應的規律.為此,康普頓接受了愛因斯坦的光子假設,認為康普頓效應是由於光子與散射物質中的電子作彈性碰撞的結果.在輕原子中,原子核對電子的束縛較弱,電子的電離能只有幾個電子伏特,遠小於X光光子的能量( 電子伏特),故在兩者碰撞過程中,可把電子看作是靜止且自由的.具體分析如下:設電子的靜止質量為 ,碰撞前,電子的能量為 ,動量為零;X光光子的能量為 ,動量為 ,碰撞後,電子獲得速度為v,能量為 ,動量為mv,X光光子的能量變為 ,動量變為 ,散射角為 ,如圖所示.碰撞過程因能量、動量都守恆,故有:
(1)
(2)
根據相對論,式中電子靜止質量 與運動質量m的關系為:
(3)
將(1)式移項平方得:
(2)式乘 得:
以上兩式相減得:
將(3)式兩邊平方後代入上式,得:
或:
由於 ,代入上式得:
(4)
式中:
(米)是一個常數,叫康普頓波長,若以 表示之,則(4)式可寫成:
(4′)
(4′)式常稱為康普頓公式.從公式的推導過程可見,在康普頓效應中,發生波長改變的原因是:當X光的光子與「自由電子」碰撞後,光子將沿某一方向( 角)散射.同時,碰撞過程中把一部分能量傳遞給「自由電子」,這樣,散射光子的能量就小於入射光子的能量.因為光子能量與頻率成正比,所以散射光的波長就大於入射光的波長.
另外,原子中內層的電子一般都被原子核束縛得很緊密,特別是重原子中.光子與這些束縛電子碰撞,實際上是與整個原子碰撞,由於原子的質量比電子大得多,根據康普頓公式計算的波長改變數小得幾乎測不出.原子序數愈大,內層電子愈多,與原子核結合而成的原子也愈重,波長不改變的成分也愈多,即康普頓效應愈弱.
3、光電效應與康普頓效應的關系
光電效應與康普頓效應在物理本質上是相同的,它們研究的對象不是整個入射光束與散射物質,而是光束中的個別光子與散射物質中的個別電子之間的相互作用.與兩種效應相對應的愛因斯坦方程和康普頓公式都建立在光子假設基礎上.光電效應主要是產生光電子,而康普頓效應主要是產生波長改變的散射光,但也向電子傳遞動量.研究光電效應和康普頓效應時都用到了能量守恆定律.
光電效應與康普頓效應的主要差別首先表現在入射光波的波長不同.原則上,任何波長的光和電子碰撞後都能發生康普頓效應.但是,對於可見光和紅外光,效應中波長的相對改變太小不易觀察.如波長為4000埃的紫光,在散射角 時,其波長的改變 埃,則.然而,對波長 埃的X光,則 ,波長更短的 光,相對改變將達百分之百!所以,就一般而言,產生光電效應的光主要是可見光和紫外光,而產
生康普頓效應的光主要是波長很短的X射線和 射線等.
其次,在康普頓效應中,與入射光子相互作用的個別電子是作為「自由電子」身分出現的,考慮的是光子與自由電子的彈性碰撞,在此過程中,不僅能量守恆而且動量也守恆.實際上,只有在電子和原子核(實為原子實)之間的束縛能量遠小於光子能量時才正確.而在光電效應中,與入射光子相互作用的個別電子並沒有看作「自由電子」,而是以一種束縛態出現的.按理,我們必須同時考慮光子、電子和原子實三者的能量和動量變化.但是,由於原子實的質量比電子的質量大幾千倍以上,因此,原子實的能量變化很小,可以略去不計.愛因斯坦方程只表示出光子和電子之間的能量守恆而沒有相應的光子和電子的動量守恆關系式就是由於這個緣故.
由此可得結論:當光子從光子源發出,射入散射物質(一般指金屬)時,主要是與電子發生作用.如果光子的能量相當低(與電子束縛能同數量級),則主要產生光電效應,原子吸收光子而產生電離.如果光子的能量相當大(遠超過電子的束縛能)時,則我們可以認為光子對自由電子發生散射,而產生康普頓效應.更為有趣的是,當光子的能量大於一個兆電子伏特時,還能出現電子對效應(物質吸收光子後發射一對正、負電子的現象).