『壹』 數學的發展歷史 古今中外
數學知識伴隨著人類文明的產生而起源,並率先在幾個文明古國開始了漫長的原始積累過程,人類的祖先為我們留下了珍貴的、可供研究的原始資料,最著名的古埃及象形文字紙草書和巴比倫楔形文字泥板書,較為集中地反映了古埃及數學和巴比的水平,它們被視為人類早期數學知識積累的代表。 古埃及紙草書,是用尼羅河流域沼澤地水生植物的莖皮壓制、粘連成紙草卷,用天然塗料液書寫而成的。有兩份紙草書直接書寫著數學內容。一份叫做「莫斯科紙草」,大約出自公元前1850年左右,它包括25個數學問題。這份紙草書於1893年被俄國人戈蘭尼采夫買得,也稱之為「戈蘭尼采夫紙草」,現藏莫斯科美術博物館。另一份叫做「萊因特紙草」,大約成書於公元前1650年左右,開頭寫有:「獲知一切奧秘的指南」的字樣,接著是作者阿默士從更早的文獻中抄下來的85個數學問題。這份紙草書於1858年被格蘭人萊因特購得,後為博物館收藏。這兩份草書是我們研究古埃及數學的重要資料,其內容豐富,記述了古埃及的記數法、整數四則運算、單位分數的獨特用法、試位法、求幾何圖形的面積、體積問題,以及數學在生產、生活初中中的應用問題。 古巴比倫泥板書,是用截面呈三角形的利器作筆,在將干未乾的膠泥板上刻寫而成的,由於字體為楔形筆劃,故稱之為楔形文字泥板,從19世紀前期至今,相繼出土了這種泥板有50萬塊之多。它們分別屬於公元前2100年蘇美爾文化末期,公元前1790年至公元前1600年間漢莫拉比時代和公元前600年至公元300年間新巴比倫帝國及隨後的波斯、塞流西得時代。其中,大約有300至400塊是數學泥板,數學泥板中又以數表居多,據信這些數學表是用來運算和解題的。這些古老的泥板,現在散藏於世界各地許多博物館,並且被一一編號,成為我們研究巴比倫數學最可靠的資料。巴比倫數學從整體上講比古埃及數學高明,古巴比倫人採用60進位制記數法,並計算出倒數表、平方表、立方表、平方根表和立方根表,其中2的平方根近似為1.414213...。巴比倫的代數有相當水平,他們用語言文字敘述方程問題及其解法,常用特殊的「長」、「寬」、「面積」等字眼表示未知量,除求解二次、三次方程的問題之外,也有一些數論性質的問題。巴比倫的幾何似乎沒有古埃及的幾何那麼重要,只是收羅了一些計算簡單圖形的面積、體積的法則,也許他們只是在解決實際問題時才搞點幾何。此外,巴比倫數學中有很明顯的商業、農業和天文的應用背景。 我們可以說,在人類早期數學知識積累過程中,由於計數物件的需要,產生了自然數,隨著記數法的產生和發展,逐漸形成了運算,導致算術的產生;由於計量實物的需要,產生了簡單的幾何,隨著農業、建築業、手工業及天文觀測的發展,逐漸積累了有關這些的基本性質和相互關系的經驗知識,於是幾何學萌芽了;由於商業計算、工程計算、天文的需要,在算術計算技巧的基礎上,逐漸積累起代數學基本知識。但是,在這個階段上,直到公元前6世紀,無論如何也找不到我們今天所謂的「理性的數學」,而只是一種初級的「經驗的數學」。
麻煩採納,謝謝!
『貳』 數學的有怎樣的發展歷史
我國古代數學發軔於原始公社末期,當時私有制和貨物交換產生以後,數與形的概念有了進一步的發展,已開始用文字元號取代結繩記事了。
春秋戰國時期,籌算記數法已使用十進位值制,人們已諳熟九九乘法表?整數四則運算,並使用了分數。西漢時期《九章算術》的出現,為我國古代數學體系的形成起到了奠基作用。
春秋時期,有一個宋國人,在路上行走時撿到了一個別人遺失的契據,拿回家收藏了起來。他秘密地數了數那契據上的齒,然後告訴鄰居說:「我發財的日子就要來到了!」
契據上的齒就是木刻上的缺口或刻痕,表示契據所代表的實物的價值。當人類沒有發明文字,或文字使用尚不普遍時,常用在木片?竹片或骨片上刻痕的方法來記錄數字?事件或傳遞信息,統稱為「刻木記事」。
我國少數民族曾經使用木刻記事的,有獨龍族?傈僳族?佤族?景頗族?哈尼族?拉祜族?苗族?瑤族?鄂倫春族?鄂溫克族?珞巴族等。如佤族用木刻計算日子和賬目;苗族用木刻記錄歌詞;景頗族用木刻記錄下村寨之間的糾紛;哈尼族用木刻作為借貸?離婚?典當土地的契約;獨龍族用遞送木刻傳達通知等。凡是通知性木刻,其上還常附上雞毛?火炭?辣子等表意物件,用以強調事情的緊迫性。
其實,早在《列子·說符》記載的故事之前,我們的先民在從野蠻走向文明的漫長歷程中有了數與形的概念。
出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有3個著地點,這都是幾何知識的萌芽。說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。
殷商甲骨文中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一?十?百?千?萬,各有專名。其中已經蘊含有十進位置值制萌芽。
傳說大禹治水時,便左手拿著准繩,右手拿著規矩丈量大地。因此,我們可以說,「規」?「矩」?「准」?「繩」是我們祖先最早使用的數學工具。
人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制訂歷法,都需要數學知識。在約成書於公元前1世紀的《周髀算經》中,記載了西周商高和周公答問之間涉及的勾股定理內容。
有一次,周公問商高:「古時做天文測量和訂立歷法,天沒有台階可以攀登上去,地又不能用尺寸去測量,請問數是怎樣得來的?」商高回答說:「數是根據圓和方的道理得來的,圓從方來,方又從矩來。矩是根據乘?除計算出來的。」這里的「矩」原是指包含直角的作圖工具。這說明了「勾股測量術」,即可用3∶4∶5的辦法來構成直角三角形。
《周髀算經》中有「勾股各自乘,並而開方除之」的記載,這已經是勾股定理的一般形式了,說明當時已普遍使用了勾股定理。勾股定理是我國數學家的獨立發明。
《禮記·內則》提到過,西周貴族子弟從9歲開始便要學習數目和記數方法,他們要受禮?樂?射?馭?書?數的訓練,作為「六藝」之一的「數」已經開始成為專門的課程。
籌算記數法對世界數學的發展具有劃時代意義。這個時期的測量數學在生產上有了廣泛應用,在數學上也有相應地提高。
戰國時期,隨著鐵器的出現,生產力的提高,我國開始了由奴隸制向封建制的過渡,新的生產關系促進了科學技術的發展與進步,此時私學開始出現。
秦漢時期,社會生產力得到恢復和發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形?重差等新的數學方法。
同時,人們注重先秦文化典籍的收集?整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書,據東漢初鄭眾記載,當時的數學知識分成了方田?粟米?差分?少廣?商功?均輸?方程?贏不足?旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
《九章算術》集先秦至西漢數學知識之大成,是我國古代最重要的數學經典,對兩漢時期以及後來數學的發展產生了很大的影響。它是西漢丞相張蒼?天文學家耿壽昌收集秦火遺殘,加以整理刪補而成的。
《漢書·藝文志》所載《許商算術》?《杜忠算術》就是研究《九章算術》的作品。東漢時期馬續?張衡?劉洪?鄭玄?徐岳?王粲等通曉《九章算術》,也為之作注。這些著作的問世,推動了稍後的數學理論體系的建立。
《九章算術》的出現,奠定了我國古代數學的基礎,它的框架?形式?風格和特點深刻影響了我國和東方的數學。
刻木記事
『叄』 數學發展歷史
奇普,印加帝國時所使用的計數工具。數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικός(mathematikós)意思是「學問的基礎」,源於μάθημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」
『肆』 數學在歷史過程中是怎樣發展的
數學的發展史大致可以分為四個階段, 即數學形成時期,初等數學,變數數學時期。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成現在中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數、三角。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分【微積分(Calculus)是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。】的創立。
第四時期
現代數學。現代數學時期,大致從19世紀上半葉開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『伍』 數學基礎的歷史及發展
對於數學基礎的關注和研究,可追溯至古代。但在較長的歷史階段中,只限於對單科數學分支基礎的討論.至於作為整個數學理論基礎的探索,尤其是「數學基礎」作為一門專門學科的形成和誕生,乃是20世紀初的事.當時也是由於多種因素和研究活動的匯合,尤其是在作為整個經典數學之理論基礎的集合論中出現悖論之後,才把數學基礎問題的研究推向高潮,並進一步促進了數學哲學的發展,直至最終成為20世紀數學領域中深入的研究活動之一。
關於幾何基礎的研究.歐幾里得(Euclid)的《幾何原本》一直被公認為是最早用嚴格的邏輯結構建立學科體系的典範.但其不足之處也一 直為歷代學者所關心。直到19世紀末,德國數學家希爾伯特(Hilbert,D.)才第一次給出了一個完備的歐幾里得幾何公理系統,這就是希爾伯特《幾何基礎》一書的核心內容.關於歐幾里得幾何基礎研究的另一個重要線索,來自關於第五公設問題的探討,長達兩千年之久對第五公設的所有試證全告失敗,由此導致非歐幾何的建立和引起人們對於幾何公理系統相容性問題的注意.後來知道:只要假定實數系統是相容的,那麼歐幾里得幾何公理系統和羅巴切夫斯基幾何公理系統都是相容的。而實數系統究竟相容與否,最終還是要歸結到作為整個經典數學理論基礎的集合論系統相容與否。
在其他方面,也有類似的涉及數學基礎的問題.公元前5世紀,畢達哥拉斯學派的古希臘數學家希帕索斯(Hippasus,(M))發現了等腰直角三角形的直角邊與斜邊不可通約,由於當時人們對於無理數的概念還一無所知,因而上述發現致使人們驚奇不安,數學史上稱為第一次數學危機.數學史上又把18世紀微積分誕生以後在數學界產生的混亂局面稱為第二次數學危機.在17世紀和整個18世紀,一方面微積分的理論和應用得到了廣泛而迅速的發展,另一方面整個微積分卻又是建立在含混不清的無窮小概念上,以致遭到各方面的非難和攻擊.其中最為著名而激烈的攻擊來自貝克萊(Berkley,G.)大主教,有所謂貝克萊悖論等.這就不能不迫使數學家們認真投入到如何為微積分奠定理論基礎的工作中去.首先是法國數學家、力學家柯西(Cauchy,A.-L.)系統地發展了極限論,德國數學家戴德金(Dedekind,(J.W.)R.)在實數論基礎上證明了極限論的基本定理,德國數學家康托爾(Cantor,G.(F.P.))和德國數學家外爾斯特拉斯(Weierstrass,K.(T.W.))避開了實無限小和實無限大的概念,發展了ε-δ方法和精化了極限論,從而避開了貝克萊悖論並給出解釋方法.當時普遍認為極限論作為嚴格的分析基礎的建立,數學的第一和第二次危機已獲解決.但在實際上,建立極限論是以實數理論為基礎的,而要建立嚴格的實數理論,又必須以集合論為基礎,亦即最終還是歸結到作為整個經典數學理論基礎的集合論是否相容的問題.
19世紀,數學的各個分支都得到了迅速的發展,亟待建立一種能以統括各個數學分支的理論基礎.這時康托爾系統地總結了長期以來數學的認識與實踐,締造了一門嶄新的數學學科,即集合論.由於集合論的思想方法滲透到各個數學分支,同時從集合論的基本概念和思想規定出發,能導出整個經典數學,因此,大家公認集合論可以作為整個經典數學諸分支學科的共同的理論基礎.但在集合論中卻又偏偏出現了悖論,特別是那個十分基本而又直接涉及邏輯理論本身的羅素悖論的出現,驚動了整個西方數學界、邏輯學界和哲學界,人們恰當地將集合論悖論的出現所造成的困難局面,稱之為第三次數學危機,而且在實質上是第一、第二次數學危機的進一步深化和發展,因為涉及的范圍更大,涉及的問題更深. 正是在這樣的歷史背景下,「數學基礎論」這一數學分科在20世紀初誕生了,擺在從事數學基礎問題研究的數學家面前的首要任務,就是如何為數學的有效性重新建立可靠的依據.由於在這一工作中所持的基本觀點不同,以致在數學基礎的研究中形成了諸如邏輯主義派、直覺主義派、形式主義派等不同的流派.另一方面,在如何避免悖論的研究中,直接導致了作為排除悖論的重要方案之一的近代公理集合論的發展,在近代公理集合論中,能對歷史上已經出現之邏輯數學悖論一一給出解釋方法,即保證這些悖論不在近代公理集合論中出現,同時迄今也未發現有新的悖論在系統內出現,但卻未能從理論上證明近代公理集合論在今後的展開中永遠不會出現矛盾.因而近代公理集合論相對於康托爾的古典集合論而言,為整個經典數學提供了一個相對牢固的理論基礎.還應指出,近代公理集合論是立足於修改康托爾的概括原則而去實現避免悖論出現的.
能否在集合論公理中保留概括原則而避免悖論?20世紀30年代,波茨娃爾(Бочевар,B.)曾考慮不修改概括原則,而立足於發展多值邏輯去避免悖論的出現,但卻始終未能達到這一目標.
20世紀60年代,美國控制論專家扎德(Zadeh,L.A.)明確提出要用數學的手段和方法去處理那些為經典數學所拒絕研究的模糊現象,並由此創立了模糊數學.這標志著數學的發展已進入數學研究對象由精確性到模糊性的再擴充時代.20世紀後期,模糊數學發展迅速,應用范圍極為廣闊.但在另一方面,模糊數學也同樣面臨著一個如何奠定其理論基礎的問題.解決這一奠基問題的方案有如下三種:其一是將模糊數學直接或間接地奠基於近代公理集合論,但這樣發展起來的模糊數學只能成為經典數學的分支,而不能在更高的形式下包括經典數學;其二是為模糊數學建立它所特有的公理集合論系統;其三是拓寬精確性經典數學的邏輯基礎和集合論基礎,在數學基礎理論意義下解決模糊謂詞的造集問題,以求能為精確性經典數學和未來的不確定性數學(應在內容和方法上有別於扎德的模糊數學)提供一個共同的理論基礎.
最後還應特別提到與數學基礎論的發展有密切關系的另一個研究領域,這就是作為數學與哲學之間的邊緣學科的數學哲學.數學哲學與哲學密切相關,但又與數學發展中的那些具有最普遍意義的課題有密切關系.當然,對於數學哲學的研究,無論是東方或西方,均可追溯到古代,但在很長的歷史階段中,數學哲學又只是作為自然哲學的一部分而未能形成獨立的學科.直到19世紀末和20世紀初,由於數學基礎論的誕生和發展,由於迫切需要深入研究數學領域中的那些帶有極端普遍和根本性的問題,才促使數學哲學的研究日趨專門化,而最終形成獨立的學科.特別是現代數學的蓬勃發展,又提出了一系列深刻的數學哲學問題,致使數學哲學這一學科進一步趨向全面繁榮的階段.所以,數學哲學既是一個古老的研究領域,又是一門年輕的新興學科.這一學科的研究價值和在數學發展中的作用日益明顯,特別是關於數學認識論、數學方法論,以及數學發展規律的研究,有許多深刻的課題有待於人們去深入探索.數學哲學的研究包括數學本體論、數學認識論、數學方法論、數學發展的外在因素、數學發展規律以及數學哲學家的不同流派和觀點等方面.數學哲學的研究將對數學工作者的世界觀、思想方法、研究興趣和研究力量的分布,甚至數學研究的基本趨勢,都會產生重大影響.
『陸』 中國數學發展的歷史
中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
『柒』 數學的發展史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展。
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。
(7)數學的歷史和發展擴展閱讀:
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
參考資料來源:網路-數學
『捌』 數學發展的歷史
很難確切地說數學發生在何時何地。
人類最初的數和形的觀念,可以遠溯到舊石器時代,在這個時期的數十萬年時間內,人類那時還處在穴居狀態,生活和動物相差不多。以後隨著人類為了生存,需要尋找賴以生存的食物,於是就有打漁和狩獵等活動,在圍獵與生存的斗爭中,人類逐步發展了語言和早期的繪畫,這加強了人類的相互交往與聯絡感情,有了一些簡單的思維形式,但在這樣一個漫長的時期中,還沒有文字,庚談不上數學的概念。
直到距今大約一萬年以前,當時覆蓋在亞洲、歐洲的水源開始融化,地球上出現了森林和沙漠,於是尋找生存的食物和游牧生活也就慢慢地結束了,漁人和獵人逐漸在土地上定居下來,成為原始的靠農業生存的原始的農人,在水草豐滿的牧區,當然也招引了大批的游牧民,從事畜牧業成為早期的牧民,在沿海一帶,人類逐漸聚居,從事航運和貿易的事業。人類的勞動逐漸地形成了一些區分,從僅僅為生存而採集食物到主動向自然界開挖潛力,發展農業、漁業、畜牧業和其它的各項生產,人類從此進入了新石器時代。
游牧民族為了確定季節,首先需要從天象來找到答案,天文學就成為一種不可缺少的需要,而天文學只有藉助數學才能發展。因為天文學是一門以科學方法研究日月星辰的學問。數千年前,居住在現金伊拉克地方的人們深信,行星是法力高強的神祗,會主宰人的生活,認為將他們在天空中運行的情形卻是記錄下來,對人類生活關系非常重要,因此近乎狂熱地對天體進行觀測,研究天文學。在我國由於農業和畜牧業的發展需要,特別是農作物的下種、收獲,需要通過天象觀測來制訂歷法,在世界上還從來沒有一個國家象我國那樣,從研究天文開始,制訂了一百多種歷法,實際使用過的也有四十多種,而歷法的制訂,沒有數學的觀測計算是不行的。
因此,古代的巴比倫人和加爾底亞人以及居住在中國土地上的中國人,就產生了最早的天文學家、歷法家和數學家,在我國,不少歷法家實際上也是數學家,象劉徽、祖沖之等
由於農業、畜牧業、漁業等生產的發展,促進了貿易的發展,於是商業自然產生,帶來了貨幣制度,計數、計量、進位制,有了數字、計算工具與計算方法,算術就逐步形成。
恩格斯很概括地說明了數學的起源:數學是從人的需要中產生的,是從丈量土地和測量容積,從計算時間和製造器皿產生的。
陳 景 潤( 1933 ~ )
數學家, 中 國 科 學 院 院 士。 1933 年 5 月 22 日 生 於 福 建 福 州。 1953 年 畢 業 於 廈 門 大 學 數 學 系。 1957 年 進 入 中 國 科 學 院 數 學 研 究 所 並 在 華 羅 庚 教 授 指 導 下 從事 數 論 方 面 的 研 究。 歷 任 中 國 科 學 院 數 學 研 究 所 研 究 員、 所 學 術 委 員 會 委 員 兼 貴 陽 民 族 學 院、 河南 大 學、 青 島 大 學、 華 中 工 學 院、 福 建 師 范 大 學 等 校 教 授, 國 家 科 委 數 學 學 科 組 成 員, 《數 學 季 刊》主 編 等 職。 主 要 從 事 解 析 數 論 方 面 的 研 究, 並 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 國 際 領 先 的 成 果。 這一 成 果 國 際 上 譽 為 「陳 氏 定 理」, 受 到 廣 泛 引 用。 這 項 工 作, 使 之 與 王 元 教 授、 潘 承 洞 教 授 共 同 獲得 1978 年 國 家 自 然 科 學 獎 一 等 獎。 其 後 對 上 述 定 理 又 作 了 改 進, 並 於 1979 年 初 完 成 論 文 《算 術級 數 中 的 最 小 素 數》, 將 最 小 素 數 從 原 有 的 80 推 進 到 16 , 受 到 國 際 數 學 界 好 評。 對 組 合 數 學 與現 代 經 濟 管 理、 科 學 實 驗、 尖 端 技 術、 人 類 生 活 密 切 關 系 等 問 題 也 作 了 研 究。 發 表 研 究 論 文 70 余篇, 並 有 《數 學 趣 味 談》、 《組 合 數 學》 等 著 作。
華 羅 庚( 1910 ~ 1985 )
數 學 家, 中 國 科 學 院 院 士。 1910 年 11 月 12 日 生 於 江 蘇金 壇, 1985 年 6 月 12 日 卒 於 日 本 東 京。
1924 年 金 壇 中 學 初 中 畢 業, 後 刻 苦 自 學。 1930 年 後 在 清 華 大 學 任 教。 1936 年 赴 英 國 劍 橋 大 學 訪 問、 學 習。 1938 年 回 國 後 任 西 南 聯 合 大 學 教 授。 1946 年 赴 美 國, 任 普林 斯 頓 數 學 研 究 所 研 究 員、 普 林 斯 頓 大 學 和 伊 利 諾 斯 大 學 教 授, 1950 年 回 國。 歷 任 清 華 大 學 教授, 中 國 科 學 院 數 學 研 究 所、 應 用 數 學 研 究 所 所 長、 名 譽 所 長, 中 國 數 學 學 會 理 事 長、 名 譽 理 事 長,全 國 數 學 競 賽 委 員 會 主 任, 美 國 國 家 科 學 院 國 外 院 士, 第 三 世 界 科 學 院 院 士, 聯 邦 德 國 巴 伐 利 亞科 學 院 院 士, 中 國 科 學 院 物 理 學 數 學 化 學 部 副 主 任、 副 院 長、 主 席 團 成 員, 中 國 科 學 技 術 大 學 數學 系 主 任、 副 校 長, 中 國 科 協 副 主 席, 國 務 院 學 位 委 員 會 委 員 等 職。 曾 任 一 至 六 屆 全 國 人 大 常 務委 員, 六 屆 全 國 政 協 副 主 席。 曾 被 授 予 法 國 南 錫 大 學、 香 港 中 文 大 學 和 美 國 伊 利 諾 斯 大 學 榮 譽 博士 學 位。 主 要 從 事 解 析 數 論、 矩 陣 幾 何 學、 典 型 群、 自 守 函 數 論、 多 復 變 函 數 論、 偏 微 分 方 程、 高 維數 值 積 分 等 領 域 的 研 究 與 教 授 工 作 並 取 得 突 出 成 就。 40 年 代, 解 決 了 高 斯 完 整 三 角 和 的 估 計 這一 歷 史 難 題, 得 到 了 最 佳 誤 差 階 估 計 (此 結 果 在 數 論 中 有 著 廣 泛 的 應 用); 對 G.H.哈 代 與 J.E.李特 爾 伍 德 關 於 華 林 問 題 及 E.賴 特 關 於 塔 里 問 題 的 結 果 作 了 重 大 的 改 進, 至 今 仍 是 最 佳 紀 錄。
在 代 數 方 面, 證 明 了 歷 史 長 久 遺 留 的 一 維 射 影 幾 何 的 基 本 定 理; 給 出 了 體 的正 規 子 體 一 定 包 含 在 它 的 中 心 之 中 這 個 結 果 的 一 個 簡 單 而 直 接 的 證 明, 被 稱 為 嘉 當-布 饒 爾-華 定 理。其 專 著 《堆 壘 素 數 論》 系 統 地 總 結、 發 展 與 改 進 了 哈 代 與 李 特 爾 伍 德圓 法、 維 諾 格 拉 多 夫 三 角 和 估 計 方 法 及 他 本 人 的 方 法, 發 表 40 余 年 來 其 主 要 結 果 仍 居 世 界 領 先地 位, 先 後 被 譯 為 俄、 匈、 日、 德、 英 文 出 版, 成 為 20 世 紀 經 典 數 論 著 作 之 一。 其 專 著 《多 個 復 變 典型 域 上 的 調 和 分 析》 以 精 密 的 分 析 和 矩 陣 技 巧, 結 合 群 表 示 論, 具 體 給 出 了 典 型 域 的 完 整 正 交 系,從 而 給 出 了 柯 西 與 泊 松 核 的 表 達 式。 這 項 工 作 在 調 和 分 析、 復 分 析、 微 分 方 程 等 研 究 中 有 著 廣 泛深 入 的 影 響, 曾 獲 中 國 自 然 科 學 獎 一 等 獎。 倡 導 應 用 數 學 與 計 算 機 的 研 制, 曾 出 版 《統 籌 方 法 平話》、 《優 選 學》 等 多 部 著 作 並 在 中 國 推 廣 應 用。 與 王 元 教 授 合 作 在 近 代 數 論 方 法 應 用 研 究 方 面 獲重 要 成 果, 被 稱 為 「華-王 方 法」。 在 發 展 數 學 教 育 和 科 學 普 及 方 面 做 出 了 重 要 貢 獻。 發 表 研 究 論 文 200 多 篇, 並 有 專 著 和 科 普 性 著 作 數 十 種.
『玖』 數學在歷史過程中是怎樣發展的
數學的發展史大致可以分為四個階段, 即數學形成時期,初等數學,變數數內學時期。容
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成現在中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數、三角。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分【微積分(Calculus)是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。
『拾』 數學是怎麼產生的,它的發展歷史是什麼
產生:數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題
數學的發展史大致可以分為四個時期。
1、第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
2、第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
3、第三時期
變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。
4、第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
(10)數學的歷史和發展擴展閱讀:
發展過程中研究出的數學成果:
1、李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為李氏恆定式。
2、華氏定理
華氏定理是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。