導航:首頁 > 文化發展 > 熱機的發展歷史

熱機的發展歷史

發布時間:2021-02-18 05:25:54

⑴ 熱機的發展史是什麼

蒸汽機→蒸汽輪機→內燃機→噴氣發動機→火箭發動機

內燃機:燃料在氣缸內燃燒的熱機。最常見的內燃機,以汽油或柴油為燃料,分別叫做汽油機和柴油機,我們先來了解汽油機。

⑵ 熱學的發展簡史

人類對熱現象的認識首先源於對火的認識 古代西方:火、土、水、風是構成萬物的四個主要元素。
中國古代:金、木、水、火、土五行學說。
實際古代物理學主要成就是古代原子論,人們用古代原子論解釋一切現象,其特點是猜測性的思辮。 熱是物質內部分子運動的表現這一基本思想逐步確立,但由於缺乏精確實驗根據,尚未形成科學理論。
18世紀中葉以後,系統的計溫學和量熱學的建立,使熱現象的研究走上實驗科學的道路,由於各種物理現象的相互聯系尚未被揭示出來,「熱質」這一特殊的「物質」被臆想出來,在以「將錯就錯」的形式發揮一定作用後最終退出歷史舞台。 在1644年笛卡兒在《哲學原理》中就提出了運動不變的思想,但沒有給出具體反映這種不變性本質的物理概念。隨著人們對自然界認識的不斷加深和拓廣,逐步發現不同的物理現象之間存在著內在的聯系。德國科學家邁耶從哲學角度首先確定了這種永恆性,他堅信「無不生有,有不變無」,通過對馬拉車運動過程進行了細致地分析,指明輪子摩擦散熱和馬做功一定有確定的比例;後來英國科學家焦耳通過大量精確和嚴格的實驗,測量出熱功當量為4.18J/cal,確立了建立能量轉化與守恆定律的實驗基礎;德國科學家亥姆霍茲最終建立了能量守恆定律的數學表達。他從v=推出了mgh=1/2mv^2,並建議用1/2mv^2代替mv表示機械運動的強弱,用來度量能量的改變。能量轉化與守恆定律的建立過程說明了正確的哲學思想、嚴格的實驗和嚴密的數學推理是自然科學認知過程的三個基本要素。
熱力學第一定律就是能量轉化與守恆定律在熱現象過程中的具體表現。在熱力學第一定律建立以後,德國物理學家克勞修斯和英國物理學家開爾文通過分別對法國工程師卡諾關於理想熱機效率問題研究成果的細致分析,各自獨立的發現了熱力學第二定律,並找到了反映物質各種性質的熱力學函數。
1850年前後,物理學界普遍認識到了熱現象和分子運動的聯系,但微觀結構和分子運動的物理圖像仍是模糊或未知的。憑借著對分子運動的假設和運用統計方法,克勞修斯正確地導出了氣體實驗公式。另外,麥克斯韋和玻爾茲曼在研究分子分布規律和平衡態方面也做出了卓有成效的工作。後來吉布斯把玻耳茲曼和麥克斯韋所創立的統計方法推廣而發展成為系統的理論,將平衡態和漲落現象統一起來並結合分子動理論一起構成統計物理學。 在1900年歐洲物理年會上,英國物理學家開爾文發表過一段非常著名的講話,其中他不僅講道「19世紀已將物理學大廈全部建成,今後物理學家的任務就是修飾完善這座大廈了」,而且又講道「在物理學的天空中幾乎一片晴朗,只存在兩朵烏雲。」他所指的兩朵烏雲其實就是邁克爾遜—莫雷測量「以太風」實驗和測量黑體輻射實驗中用現有的經典物理無法解釋。後來對「以太」的測量的研究和愛因斯坦狹義相對論的建立,揭示了經典牛頓時空觀的嚴重缺陷;而對黑體輻射能譜分布規律的研究及對熱容量的研究,揭示了經典統計物理學理論的重大缺陷,發現了微觀運動的新特性。1900年普朗克提出了能量量子化的假設,用這種假設成功地揭示了黑體輻射問題。與量子力學的有機結合使經典統計物理學發展成為量子統計物理學。二十世紀五十年代以後,非平衡態熱力學和統計物理學得到迅速發展,其代表人物是比利時物理學家普里高金。

⑶ 熱機的發展熱機的出現推動了17世紀的工業革命,熱機又伴隨著工業革命的發展而發展,最初出現的熱機是蒸汽

1.可以利用電能、太陽能、氫氣來驅動.優點:清潔,無污染.
2.車速要有限制,不能太快;做好車輛的故障檢查和排除工作;司機與乘客要系安全帶;遵守交通規則等.

⑷ 熱機發展史都有哪幾種

使汽油機連續工作,活塞必須在推動曲軸後回到原來 位置,以便再次推動曲軸,這就要求活專塞能屬在汽缸里做往復運動.活塞在往復運動中從汽缸一端運動到汽缸的另一端叫做一個沖程. 熱機的四個沖程:吸氣沖程,壓縮沖程,做功沖程,排氣沖程. 四沖程就是兩周轉就是做一次功就是吸氣一次就是耗1缸油 熱機的發展史: 蒸汽機→蒸汽輪機→內燃機→噴氣發動機→火箭發動機

⑸ 熱機的發展資料!!!急啊~~~

熱機的發展
「蒸汽機是一個真正的國際發明,而這個事實又證實了一個巨大的歷史進步。回」
1695年,答法國人巴本第一個發明蒸汽機,但操作不便,不安全。
1705年,鈕科門和科里製造了新蒸汽機,有一定實用價值,但用水冷卻氣缸,能量損失很大。
1769年,英國技工瓦特改進了鈕科門機,加了冷凝器,使機器運作由斷續變連續,從而蒸汽機的使用價值大大提高,導致了歐洲的工業革命。
1785年,熱機被應用於紡織。
1807年,熱機被美國人富爾頓應用於輪船,1825年被用於火車和鐵路。

⑹ 熱機按歷史的發展程序依次為:______、______、______、______、和_____

抄熱機按歷史的發展程序依次為襲:蒸汽機、蒸汽輪機。內燃機、噴氣發動機和火箭發動機 。


熱機是把內能轉化為機械能,最早的熱機是瓦特發明的蒸汽機,其次是蒸汽輪機,再往後依次是內燃機、噴氣發動機和火箭發動機.

熱機及其種類:
(1)熱機定義:把內能轉化為機械能的機器。
(2)熱機原理:

(3)熱機種類:蒸汽機、內燃機、汽輪機、噴氣發動機、火箭發動機等。

⑺ 熱機的發展與人類生產生活的關系

「熱機的出現推動了17世紀的工業革命,開始了人類社會的工業化進程」。內現今交通、航容天、工業……,方方面面都離不開熱機,熱機已經走進千家萬戶,並應用於諸多領域,它提高了工作和產出效率,使社會得到迅速發展;使成千上萬的人更快、更全面地開啟了現代化生活的進程,應該說它在眾多領域使生產力得以飛速發展,推動了現代社會文明的進程。

⑻ 熱機的發展過程

熱機的發展史:
蒸汽機→蒸汽輪機→內燃機→噴氣發動機→火箭發動機
熱機種類很多,按工質接受燃料釋放能量的方式,分為內燃機和外燃機

⑼ 哪裡找熱機發展的歷史中文視頻

去優酷或者56都行

⑽ 內燃機發展史

內燃機以其熱效率高、結構緊湊,機動性強,運行維護簡便的優點著稱於世。一百多年以來,內燃機的巨大生命力經久不衰。目前世界上內燃機的擁有量大大超過了任何其它的熱力發動機,在國民經濟中佔有相當重要的地位。現代內燃機更是成為了當今用量最大、用途最廣、無一與之匹敵的的最重要的熱能機械。

當然內燃機同樣也存在著不少的缺點,主要是:對燃料的要求高,不能直接燃用劣質燃料和固體燃料;由於間歇換氣以及製造的困難,單機功率的提高受到限制,現代內燃機的最大功率一般小於4萬千瓦,而蒸汽機的單機功率可以高達數十萬千瓦;內燃機不能反轉;內燃機的雜訊和廢氣中有害成分對環境的污染尤其突出。可以說這一百多年來的內燃機的發展史就是人類不斷革新,不斷挑戰克服這些缺點的歷史。

內燃機發展至今,約有一個半世紀的歷史了。同其他科學一樣,內燃機的每一個進步都是人類生產實踐經驗的概括和總結。內燃機的發明始於對活塞式蒸汽機的研究和改進。在它的發展史中應當特別提到的是德國人奧托和狄塞爾,正是他們在總結了前人無數實踐經驗的基礎上,對內燃機的工作循環提出了較為完善的奧托循環和狄塞爾循環,才使得到他們為止幾十年間無數人的實踐和創造活動得到了一個科學地總結,並有了質的飛躍,他們將前任粗淺的、純經驗的、零亂無序的的經驗,加以繼承、發展、總結、提高,找出了規律性,為現代汽油機和柴油機熱力循環奠定了熱力學基礎,為內燃機的發展做出了偉大的貢獻。

往復活塞式內燃機

往復活塞式內燃機的種類很多,主要的分類方法有這樣一些:按所用的燃料的不同,分為汽油機,柴油機、煤油機、煤氣機(包括各種氣體燃料內燃機)等;按每個工作循環的行程數不同,分為四沖程和二沖程;按著火方式不同,分為點燃式和壓燃式;按冷卻方式不同,分為水冷式和風冷式;按氣缸排列形式不同,分為直列式、V型、對置式、星型等;按氣缸數不同,分為單缸內燃機和多缸內燃機等;按內燃機的用途不同,分為汽車用、農用、機車用、船用以及固定用等等。本文將會主要針對煤氣機、汽油機、柴油機這樣一個發展脈絡來向大家介紹。

最早的內燃機——煤氣機

最早出現的內燃機是以煤氣為燃料的煤氣機。1860年,法國發明家萊諾製成了第一台實用內燃機(單缸、二沖程、無壓縮和電點火的煤氣機,輸出功率為0.74—1.47KW,轉速為100r/min,熱效率為4%)。法國工程師德羅沙認識到,要想盡可能提高內燃機的熱效率,就必須使單位氣缸容積的冷卻面積盡量減小,膨脹時活塞的速率盡量快,膨脹的范圍(沖程)盡量長。在此基礎上,他在1862年提出了著名的等容燃燒四沖程循環:進氣、壓縮、燃燒和膨脹、排氣。

1876年,德國人奧托製成了第一台四沖程往復活塞式內燃機(單缸、卧式、以煤氣為燃料、功率大約為2.21KW、180r/min)。在這部發動機上,奧托增加了飛輪,使運轉平穩,把進氣道加長,又改進了氣缸蓋,使混合氣充分形成。這是一部非常成功的發動機,其熱效率相當於當時蒸汽機的兩倍。奧托把三個關鍵的技術思想:內燃、壓縮燃氣、四沖程融為一體,使這種內燃機具有效率高、體積小、質量輕和功率大等一系列優點。在1878年巴黎萬國博覽會上,被譽為「瓦特以來動力機方面最大的成就」。等容燃燒四沖程循環由奧托實現,也被稱為奧托循環。

煤氣機雖然比蒸汽機具有很大的優越性,但在社會化大生產情況下,仍不能滿足交通運輸業所要求的高速、輕便等性能。因為它以煤氣為燃料,需要龐大的煤氣發生爐和管道系統。而且煤氣的熱值低(約1.75×107~2.09×107J/m3),故煤氣機轉速慢,比功率小。到19世紀下半葉,隨著石油工業的興起,用石油產品取代煤氣作燃料已成為必然趨勢。

汽油機的出現

1883年,戴姆勒和邁巴赫製成了第一台四沖程往復式汽油機,此發動機上安裝了邁巴赫設計的化油器,還用白熾燈管解決了點火問題。以前內燃機的轉速都不超過200r/min,而戴姆勒的汽油機轉速一躍為800—1000r/min。它的特點是功率大,質量輕、體積小、轉速快和效率高,特別適用於交通工具。與此同時,本茨研製成功了現在仍在使用的點火裝置和水冷式冷卻器。

到十九世紀末,主要的集中活塞式內燃機大體上進入了實用階段,並且很快顯示出巨大的生命力。內燃機在廣泛應用中不斷地得到改善和革新,迄今已達到一個較高的技術水平。在這樣一個漫長的發展歷史中,有兩個重要的發展階段是具有劃時代意義的:一是50年代興起的增壓技術在發動機上的廣泛應用;再就是70年代開始的電子技術及計算機在發動機研製中的應用,這兩個發展趨勢至今都方興未艾

首先我們來看一下汽油機在本世紀的發展歷程。在汽車和飛機工業的推動下汽油機取得了長足的發展。按提高汽油機的功率、熱效率、比功率和降低油耗等主要性能指標的過程,可以把汽油機的發展分為四個階段。

第一階段是本世紀最初二十年,為適應交通運輸的要求,以提高功率和比功率為主。採取的主要技術措施是提高轉速、增加缸數和改進相應輔助裝置。這個時期內,轉速從上世紀的500—800r/min提高到1000—1500r/min,比功率從3.68W/Kg提高到441.3—735.5W/Kg,對提高飛機的飛行性能和汽車的負載能力具有重大的意義。

第二階段時間在20年代,主要解決汽油機的爆震燃燒問題。當時汽油機的壓縮比達到4時,汽油機就發生爆震。美國通用汽車公司研究室的米格雷和鮑義德通過在汽油中加入少量的四乙基鋁,干擾氧和汽油分子化合的正常過程,解決了爆震的問題,使壓縮比從4提高到了8,大大提高了汽油機的功率和熱效率。當時另一嚴重影響汽油機功率和熱效率的因素是燃燒室的形狀和結構,英國的里卡多及其合作者通過對多種燃燒室及燃燒原理的研究,改進了燃燒室,使汽油機的功率提高了20%。

第三階段是從20年代後期到40年代早期,主要是在汽油機上裝備增壓器。廢氣渦輪增壓可使氣壓增至1.4—1.6大氣壓,他的應用為提高汽油機的功率和熱效率開辟了一個新的途徑。但是其真正的廣泛應用,卻是在50年代後期才普及的。

第四階段從50年代至今,汽油機技術在原理重大變革之前發展已近極致。它的結構越來越緊湊,轉速越來越高。其技術現狀為:缸內噴射;多氣門技術;進氣滾流,稀薄分層燃燒;電子控制點火正時、汽油噴射及空燃比隨工況精確控制等全面電子發動機管理;廢氣在循環及三元催化等排氣凈化技術等。其集中體現在近年來研製成功並投產的缸內直噴分層充氣稀燃汽油機(GDI)。

但是隨著70年代開始的電子技術在發動機上的應用,為內燃機技術的改進提供了條件,使內燃機基本上滿足了目前世界各國有關排放、節能、可靠性和舒適性等方面的要求。內燃機電子控制現已包括電控燃油噴射、電控點火、怠速控制、排放控制、進氣控制、增壓控制、警告提示、自我診斷、失效保護等諸多方面。

同樣內燃機電子控制技術的發展也大致可分為四個階段:

1、內燃機零部件或局部系統的單獨控制,如電子油泵、電子點火裝置等。

2、內燃機單一系統或幾個相關系統的獨立控制,如燃油供給系統控制、最佳空燃比控制等。

3、整台內燃機的統一智能化控制,如內燃機電子控制系統。

4、裝置與內燃機動力的集中電子控制,如汽車、船舶、發電機組的集中電子控制系統。

電子控制系統一般由感測器、執行器和控制器三部分組成。由此構成各種不同功能、不同用途的控制系統。。其主要目標是保持發動機各運行參數的最佳值,以求得發動機功率、燃油耗和排放性能的最佳平衡,並監視運行工況。如Caterpillar公司的3406PEPC系統是在3406柴油機上採用可變程序的發動機控制系統,具有電子調速功能,採用電子控制空燃比,可將噴有提前角始終保持在最佳值。美國Stanaclyne公司將其生產的DB型分配泵改為電子控制噴油泵,稱為PFP系統,採用步進電機作為執行元件來控制噴油量和噴油定時

柴油機——內燃機家族的另一個明星

柴油機幾乎是與汽油機同時發展起來的,它們具有許多相同點。所以柴油機的發展也與汽油機有許多相似之處,可以說在整個內燃機的發展史上,它們是相互推動的。

德國狄塞爾博士於1892年獲得壓縮點火壓縮機的技術專利,1897年製成了第一台壓縮點火的「狄塞爾」內燃機,即柴油機。

柴油機的高壓縮比帶來眾多的優點:

1、不但可以省去化油器和點火裝置,提高了熱效率,而且可以使用比汽油便宜得多的柴油作燃料。

2、柴油機由於其壓縮比大,最大功率點、單位功率的油耗低。在現代優秀的發動機中,柴油機的油耗約為汽油機的70%。特別像汽車,通常在部分負荷工況下行駛,其油耗約為汽油機的60%。柴油機是目前熱效率最高的內燃機。

3、柴油機因為壓縮比高,發動機結實,故經久耐用、壽命長。

同時高壓縮比也帶來了缺點:

1、柴油機的結構笨重。通常柴油的單位功率質量約為汽油機的1.5~3倍。柴油機壓縮比高,爆發壓力也高,可達汽油機的1.5倍左右(不增壓的情況下)。為承受高溫高壓,就要求結實的結構。所以柴油機最初只是作為一種固定式發動機使用。

2、在同一排量下,柴油機的輸出功率約為汽油機的1/3。因為柴油機把燃料直接噴入氣缸,不能充分利用空氣,相應功率輸出低。假設汽油機的空氣利用率為100%,那麼柴油機僅有80%~90%。柴油機功率輸出小的另一原因是壓縮比大,發動機的摩擦損失比汽油機大。這種摩擦損失與轉速成正比,不能期望通過增加轉速來提高功率。轉速最高的汽油機每分鍾可運轉10000次以上(如賽車發動機),而柴油機的最高轉速卻只有5000r/min。

近百年來,柴油機的熱效率提高近80%,比功率提高幾十倍,空氣利用率達90%。當今柴油機的技術水平表現為:優良的燃燒系統;採用4氣門技術;超高壓噴射;增壓和增壓中冷;可控廢氣再循環和氧化催化器;降低雜訊的雙彈簧噴油器;全電子發動機管理等,集中體現在以採用電控共軌式燃油噴射系統為特徵的新一代柴油機上。目前,日本的Nippondeno公司(ECDU2),德國Bosch(ZECCEL)和美國Caterpilla公司(HELII)是研究和生產共軌式電控噴油系統的主要公司。

增壓技術在柴油機上的應用要比汽油機晚一些。早在20年代就有人提出壓縮空氣提高進氣密度的設想,直到1926年瑞士人A.J.伯玉希才第一次設計了一台帶廢氣渦輪增壓器的增壓發動機。由於當時的技術水平和工藝、材料的限制,還難以製造出性能良好的渦輪增壓器,加上二次大戰的影響,增壓技術為能迅速普及,直到大戰結束後,增壓技術的研究和應用才受到重視。1950年增壓技術才開始在柴油機上使用並作為產品提供市場。

50年代,增壓度約為50%,四沖程機的平均有效壓力約為0.7—0.8MPa,無中冷,處於一個技術水平較低的發展階段。其後20多年間,增壓技術得到了迅速的發展和廣泛地採用。

70年代,增壓度達200%以上,正式作為商品提供的柴油機的平均有效壓力,四沖程機已達2.0MPa以上,二沖程機已超過1.3MPa,普遍採用中冷,使高增亞(>2.0MPa)四沖程機實用化。單級增壓比接近5,並發展了兩級增壓和超高增壓系統,相對於50年代初期剛採用增壓技術的發動機技術水平,30年來有了驚人的發展。

進入80年代,仍保持這種發展勢頭。進排氣系統的優化設計,提高充氣效率,充分利用廢氣能量,出現諧振進氣系統和MPC增壓系統。可變截面渦輪增壓器,使得單級渦輪增壓比可達到5甚至更高。採用超高增壓系統,壓力比可達10以上,而發動機的壓縮比可降至6以下,發動機的功率輸出可提高2—3倍。進一步發展到與動力渦輪復合式二級渦輪增壓系統。由此可見,高增壓、超高增壓的效果是可觀的,將發動機的性能提高到了一個嶄新的水平。

轉動式內燃機

在蒸汽機的發展歷史中有從往復活塞式蒸汽機到蒸汽輪機的演化。這一點,對內燃機的發展大有啟發的。往復式內燃機運動要通過曲軸連桿機構或凸輪機構、擺盤機構、搖臂機構等,轉換為功率輸出軸的轉動,這樣不僅使機構復雜,而且由於轉動機構的摩擦損耗,還會降低機械效率。另外由於活塞組的往復運動造成曲柄連桿機構的往復慣性力,這個慣性力與轉速的平方成正比。隨轉速的提高,軸承上的慣性負荷顯著增加,並由於慣性力的不平衡而產生強烈的振動。此外,往復式內燃機還有一套復雜的氣門控制機構。於是人們設想:既然工具機的運動形式大部分都是軸的轉動,能否效法從往復活塞式蒸汽機到蒸汽輪機的路子,使熱能直接轉化為軸的轉動呢?於是人們開始了在這一領域的探索。

燃氣輪機

1873年布拉頓(GeorgeBrayton)製造了一種定壓燃燒的發動機。該機能提供使燃氣完全膨脹到大氣壓所發出的功率。20世紀初法國的阿曼卡(BeneArmangaud)等成功地應用布拉頓循環原理製成燃氣輪機。但是,因當時條件限制,熱效率很低未能得到發展。

到30年代,由於空氣動力學及耐高溫合金材料和冷卻系統的進展,為燃氣輪機進入實用創造了條件。燃氣輪機雖然是內燃機,但它沒有像往復式內燃機那樣必須在封閉的空間里和限定的時間內燃燒的限制,所以不會發生像汽油機那樣令人擔心的爆震,也很少像柴油機那樣受摩擦損失的限制;且燃料燃燒所產生的氣體直接推動葉輪轉動,故它的結構簡單(與活塞式內燃機相比,其部件僅為它的1/6左右)、質量輕、體積小、運行費用省,且易於採用多種燃料,也較少發生故障。雖然燃氣輪機目前尚存在一些缺點:壽命短、需要高級耐熱鋼材和成本高及排污(主要是NOx)較嚴重等,致使至今燃氣輪機的應用仍局限於飛機、船舶、發電廠和機車,但是由於布拉頓循環的優越性和燃氣輪機對燃油的限制少及上述的其它優點,使得它仍為現在和將來人們致力研究的動力技術之一。若突破渦輪入口溫度,大大提高熱效率,且克服其它缺點,燃氣輪機有望取代汽、柴油機。

旋轉活塞式發動機

一直以來人們都在致力於建造旋轉式發動機,其目標是避免往復式發動機固有的復雜性。在1910年以前,人們曾提出過2000多個旋轉發動機的方案。20世紀初,又有許多人提出不同的方案,但大多因結構復雜或無法解決氣缸密封問題而不能實現。直到1954年,德國人汪克爾(FelixWankel)經長期研究,突破了氣缸密封這一關鍵技術,才使具有長短幅圓外旋輪線缸體的三角旋轉活塞發動機首次運轉成功。轉子每轉一圈可以實現進氣、壓縮、燃燒膨脹和排氣過程,按奧托循環運轉。1962年三角轉子發動機作為船用動力,到80年代日本東洋工業公司把它用於汽車引擎。

轉子發動機有一系列的優點:

1、它取消了曲柄連桿機構、氣門機構等,得以實現高速化。

2、質量輕(比往復式內燃機質量下降1/2到1/3)、結構和操作簡單(零件數量比往復式少40%,體積減少50%)。

3、在排氣污染方面也有所改善,如NOx產生較少。

但轉子發動機也存在著嚴重的不足之處:

1、.這種結構的密封性能較差,至今只能作為壓縮比低的汽油機使用。

2、由於高速帶來了扭矩低,組織經濟的燃燒過程困難。

3、壽命短、可靠性低以及加工長短軸旋輪線的專用機床構造復雜等。

內燃機的發展趨勢

內燃機的發明,至今已有100多年的歷史。如果把蒸汽機的發明認為是第一次動力革命,那麼內燃機的問世當之無愧是第二次動力革命。因為它不僅是動力史上的一次大飛躍,而且其應用范圍之廣、數量之多也是當今任何一種別的動力機械無與倫比的。隨著科技的發展,內燃機在經濟性、動力性、可靠性等諸多方面取得了驚人的進步,為人類做出了巨大貢獻。蒸汽機從初創到完成花去了一個世紀的時間,從完成到極盛又走了一個世紀,從極盛到衰落大約也是一個世紀。內燃機的發明也經歷了一個世紀的歷程,從那時起,人類又前進了一個世紀,可以說如今內燃機已進入了極盛時期。在世紀之交的今天,我們關注內燃機的未來,人們在拭目以待的同時,更希望內燃機能在新的世紀再創輝煌的業績。這里我將向大家展示新世紀里內燃機的發展趨勢。

內燃機增壓技術

從內燃機重要參數(壓力、溫度、轉速)的發展規律來看,可以發現這三個參數在1900年以前隨著年代的推移提高得很快。而在1900年以後,尤其是1950年以後,溫度、轉速提高變慢,而平均有效壓力隨著年代的增加仍直線上升。實踐證明:提高平均有效壓力可以大幅度地提高效率,減輕質量。而提高平均有效壓力的技術就是提高增壓度。如柴油機增壓可大幅度地縮小柴油機進氣管尺寸,並使氣缸有足夠大的充氣效率用於提高柴油機的功率,使之能在一個寬廣的轉速范圍內既提高功率又有大的扭矩。一台增壓中冷柴油機可以使功率成倍提高,而造價僅提高15%~30%,即每馬力造價可平均降低40%。所以增壓、高增壓、超高增壓是當前內燃機重要的發展方向之一。但是這只是問題的一個方面,另一個方面發動機強化和超強化會給零部件帶來過大的機械負荷和熱負荷,特別是熱負荷問題已成為發動機進一步強化的限制;再就是單級高效率、高壓比壓氣機也限制了增壓技術的進一步發展,因此,不是增壓度越高越好的。

內燃機電子控制技術

內燃機電子控制技術產生於20世紀60年代後期,通過70年代的發展,80年代趨於成熟。隨著電子技術的進一步發展,內燃機電子控制技術將會承擔更加重要的任務,其控制面會更寬,控制精度會更高,智能化水平也會更高。諸如燃燒室容積和形狀變化的控制、壓縮比變化控制、工作狀態的機械磨損檢測控制等較大難度的內燃機控制將成為現實並得到廣泛應用。內燃機電子控制是由單獨控制向綜合、集中控制方向發展,是由控制的低效率及低精度向控制的高效率及高精度發展的。隨著人類進入電子時代,21世紀的內燃機也將步入「內燃機電子時代」,其發展情況將與高速發展的電子技術相適應。內燃機電子控制技術是內燃機適應社會發展需求的主要技術依託,也是內燃機保持21世紀輝煌的重要影響因素。

內燃機材料技術

內燃機使用的傳統材料是鋼、鑄鐵和有色金屬及其合金。在內燃機發展過程中,人們不斷對其經濟性、動力性、排放等提出了更高的要求,從而對內燃機材料的要求相應提高。根據內燃機今後的發展目標,對內燃機材料的要求主要集中在絕熱性、耐熱性、耐磨性、減摩性、耐腐蝕性及熱膨脹小、質量輕等方面。要促進內燃機材料的發展,除採用改變材料化學成分與含量來達到零部件所要求的物理、機械性能這一常規方法外,也可採用表面強化工藝來使材料達到所需的要求,但內燃機材料的發展更需要我們去開發適應不同工作狀態的新材料。與內燃機傳統材料相比,陶瓷材料具有無可比擬的絕熱性和耐熱性,陶瓷材料和工程塑料(如纖維增強塑料)具有比傳統材料優越的減摩性、耐磨性和耐腐蝕性,其比重與鋁合金不相上下而比鋼和鑄鐵輕得多。因此,陶瓷材料(高性能陶瓷)憑借其優良的綜合性能,可用在許多內燃機零件上,如噴油點火零件、燃燒室、活塞頂等,若能克服脆性、成本等方面的弱點,在新世紀里將會得到廣泛應用。工程塑料也可用於許多內燃機零件,如內燃機上的各種罩蓋、活塞裙部、正時齒輪、推桿等,隨著工藝水平的提高及價格的降低,未來工程塑料在內燃機上的應用將會與日俱增。綜合內燃機的各種材料,為揚長避短,在新材料的基礎上又開發出了以金屬、塑料或陶瓷為基材的各種復合材料,並開始在內燃機上逐漸推廣使用。

展望新世紀,在今後一段時期內,鋼、鑄鐵和有色金屬及其合金,仍將是內燃機的主要材料。各種表面強化工藝將更加先進,並得到廣泛應用。以金屬、塑料、陶瓷為基材的各種復合材料將在10年之後進入驚人的高速推廣時期,新材料在內燃機上的使用也將同時加速。

內燃機製造技術

內燃機的發展水平取決於其零部件的發展水平,而內燃機零部件的發展水平,是由生產製造技術等因素來決定的。也就是說,內燃機零部件的製造技術水平,對主機的性能、壽命及可靠性有決定性的影響。同樣製造技術與設備的關系也是密不可分的,每當新一代設備或工藝材料研製成功,都會給製造技術的革新帶來突破性的進展。進入新世紀後,科學技術的發展會異常迅猛,新設備的研製周期將越來越短,因此新世紀內燃機製造技術必將形成迅速發展的局面。

由於鑄造技術水平的提高,氣沖造型、靜壓造型、樹脂自硬砂造型制芯、消失模鑄造,使內燃機鑄造的主要零件如機體、缸蓋可以製成形狀復雜曲面及箱型結構的薄壁鑄件。這不僅在很大程度上提高了機體剛度,降低了雜訊輻射,而且使內燃機達到輕量化。由於象噴塗、重熔、燒結、堆焊、電化學加工、激光加工等局部表面強化技術的進步,使材料功能得到完善的發揮;由於設備水平提高,加工製造技術向高精度、高效率、自動化方向發展,帶動了內燃機零部件生產向高集中化程度發展。另一方面,柔性製造技術的推廣,使內燃機產品更新換代具有更大的靈活性和適應性。多品種小批量生產的柔性製造系統引起了內燃機製造商們的廣泛認同,也順應了生產技術發展及市場形勢的變化。電子技術及計算機在設計、製造、試驗、檢測、工藝過程式控制制上的應用,推動了行業的技術進步,提高了內燃機的產品質量。新材料的發展也推動了內燃機零部件生產工藝的變革,特別是工程塑料、陶瓷材料及復合材料在內燃機上的運用,有力地促進了內燃機製造技術的發展。隨著內燃機電控技術的發展,電控系統三大組成部分(感測器、執行器、控制單元)將成為內燃機零部件行業的重要分支,同時向傳統的內燃機製造業提出了新的課題。

由此我們可以推斷:在21世紀,內燃機製造技術將向高精度、多元化方面飛速發展。它的發展速度和方向不僅關繫到內燃機的質量,還直接對內燃機的未來產生重大影響。就其產品技術進步快慢而言,汽車內燃機發展最快,其次是機車、船舶、發電機組、工程機械、農業機械等。

內燃機代用燃料

由於世界石油危機和發動機尾氣對環境的污染日益嚴重,內燃機技術的研究轉向高效節能及開發利用潔凈的代用燃料。以汽油機和柴油機為基礎進行改造或重新設計,開發以天然氣、液化石油氣和氫氣等為燃料的氣體發動機為目前和今後一段時間內內燃機技術的重點之一。其中氣體發動機的功率恢復技術和氫氣發動機的燃燒控制等是其中的重中之重。

綜述

內燃機在應用中不斷發展,各種內燃機彼此相互競爭,相互滲透,相互綜合,從中演化出各種新的混合式發動機。如燃氣輪機的發明和發展一方面對柴油機形成競爭,另一方面也補充了柴油機,使柴油機廢氣渦輪增壓得到完善,反過來增強了柴油機的競爭能力。燃氣輪機本來也是蒸汽輪機的競爭對手,但人們把燃氣輪機和蒸汽輪機這兩種按不同熱力循環工作的熱機聯合在一起,構成一種嶄新的高效循環:燃氣——蒸汽輪機聯合循環。熱力學第二定律告訴我們,要提高熱效率,應盡可能提高熱機的加熱溫度和降低排熱溫度。蒸汽機的排熱溫度較低(約300K),但由於水蒸氣本身特性和設備條件的限制,其加熱溫度不可能太高,目前穩定在800~900K以下。隨著冶金和冷卻技術的發展,燃氣輪機的加熱溫度一直在上升,目前已達1300~1500K左右;但其排熱溫度卻不能太低,一般為700~800K,甚至更高。所以這兩種熱機目前的實際熱效率都未超過40%。燃氣——蒸汽聯合循環,將燃氣輪機的排氣送進余熱鍋爐生產蒸氣,供蒸汽輪機利用。聯合循環可以同時取得燃氣輪機加熱溫度高和蒸汽輪機排熱溫度低的雙重優點。目前此聯合循環機組最高熱效率已達47%以上。如果把它作為熱電並供機組使用,其燃料利用率可達80%左右。

混合動力的意義越來越廣,如電動馬達加汽油機或柴油機,以應用各自的優點,屏蔽各自的缺點。而日產汽車工業公司則把高性能的發電機兼電動機裝入柴油機飛輪的位置,成功地研製出名符其實的混合式發動機,即成功地開發了使兩種原理同時作用的原動機(HIMR發動機)。混合式發動機是未來動力技術的熱點之一,它極有望成為既不損害人類已獲得的方便,又能保持美好環境的機械。

內燃機的發展史表明,具有本質上優越性的新技術,是富有生命力的新生事物,必有廣闊的發展前途。第一台實用內燃機熱效率只有4%,而當時蒸汽機的熱效率已達8%~10%;但內燃機「內燃」本質上的優越性決定了它很快地就超過了蒸汽機。

綜上所述,21世紀的內燃機將面臨來自各方面的挑戰,它將義無返顧地朝著節約能源、燃料多樣化、提高功率、延長壽命、提高可靠性、降低排放和雜訊、減輕質量、縮小體積、降低成本、簡化維護保養等方向迅猛發展。在21世紀,天然氣、醇類、植物油及氫等代用燃料將為內燃機增添新的活力,而內燃機電子控制技術在提高品質的同時也延長了內燃機行業的「生命」。新材料、新工藝的技術革命,為21世紀內燃機的發展產生了新的推動力。21世紀的內燃機,將在造福人類的同時不斷彌補自身缺陷,以盡可能完美的形象為人類作出新的貢獻

閱讀全文

與熱機的發展歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296