導航:首頁 > 文化發展 > 微分方程的發展歷史

微分方程的發展歷史

發布時間:2021-02-16 18:32:54

Ⅰ 數學發展的歷史

很難確切地說數學發生在何時何地。

人類最初的數和形的觀念,可以遠溯到舊石器時代,在這個時期的數十萬年時間內,人類那時還處在穴居狀態,生活和動物相差不多。以後隨著人類為了生存,需要尋找賴以生存的食物,於是就有打漁和狩獵等活動,在圍獵與生存的斗爭中,人類逐步發展了語言和早期的繪畫,這加強了人類的相互交往與聯絡感情,有了一些簡單的思維形式,但在這樣一個漫長的時期中,還沒有文字,庚談不上數學的概念。

直到距今大約一萬年以前,當時覆蓋在亞洲、歐洲的水源開始融化,地球上出現了森林和沙漠,於是尋找生存的食物和游牧生活也就慢慢地結束了,漁人和獵人逐漸在土地上定居下來,成為原始的靠農業生存的原始的農人,在水草豐滿的牧區,當然也招引了大批的游牧民,從事畜牧業成為早期的牧民,在沿海一帶,人類逐漸聚居,從事航運和貿易的事業。人類的勞動逐漸地形成了一些區分,從僅僅為生存而採集食物到主動向自然界開挖潛力,發展農業、漁業、畜牧業和其它的各項生產,人類從此進入了新石器時代。

游牧民族為了確定季節,首先需要從天象來找到答案,天文學就成為一種不可缺少的需要,而天文學只有藉助數學才能發展。因為天文學是一門以科學方法研究日月星辰的學問。數千年前,居住在現金伊拉克地方的人們深信,行星是法力高強的神祗,會主宰人的生活,認為將他們在天空中運行的情形卻是記錄下來,對人類生活關系非常重要,因此近乎狂熱地對天體進行觀測,研究天文學。在我國由於農業和畜牧業的發展需要,特別是農作物的下種、收獲,需要通過天象觀測來制訂歷法,在世界上還從來沒有一個國家象我國那樣,從研究天文開始,制訂了一百多種歷法,實際使用過的也有四十多種,而歷法的制訂,沒有數學的觀測計算是不行的。

因此,古代的巴比倫人和加爾底亞人以及居住在中國土地上的中國人,就產生了最早的天文學家、歷法家和數學家,在我國,不少歷法家實際上也是數學家,象劉徽、祖沖之等

由於農業、畜牧業、漁業等生產的發展,促進了貿易的發展,於是商業自然產生,帶來了貨幣制度,計數、計量、進位制,有了數字、計算工具與計算方法,算術就逐步形成。

恩格斯很概括地說明了數學的起源:數學是從人的需要中產生的,是從丈量土地和測量容積,從計算時間和製造器皿產生的。

陳 景 潤( 1933 ~ )

數學家, 中 國 科 學 院 院 士。 1933 年 5 月 22 日 生 於 福 建 福 州。 1953 年 畢 業 於 廈 門 大 學 數 學 系。 1957 年 進 入 中 國 科 學 院 數 學 研 究 所 並 在 華 羅 庚 教 授 指 導 下 從事 數 論 方 面 的 研 究。 歷 任 中 國 科 學 院 數 學 研 究 所 研 究 員、 所 學 術 委 員 會 委 員 兼 貴 陽 民 族 學 院、 河南 大 學、 青 島 大 學、 華 中 工 學 院、 福 建 師 范 大 學 等 校 教 授, 國 家 科 委 數 學 學 科 組 成 員, 《數 學 季 刊》主 編 等 職。 主 要 從 事 解 析 數 論 方 面 的 研 究, 並 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 國 際 領 先 的 成 果。 這一 成 果 國 際 上 譽 為 「陳 氏 定 理」, 受 到 廣 泛 引 用。 這 項 工 作, 使 之 與 王 元 教 授、 潘 承 洞 教 授 共 同 獲得 1978 年 國 家 自 然 科 學 獎 一 等 獎。 其 後 對 上 述 定 理 又 作 了 改 進, 並 於 1979 年 初 完 成 論 文 《算 術級 數 中 的 最 小 素 數》, 將 最 小 素 數 從 原 有 的 80 推 進 到 16 , 受 到 國 際 數 學 界 好 評。 對 組 合 數 學 與現 代 經 濟 管 理、 科 學 實 驗、 尖 端 技 術、 人 類 生 活 密 切 關 系 等 問 題 也 作 了 研 究。 發 表 研 究 論 文 70 余篇, 並 有 《數 學 趣 味 談》、 《組 合 數 學》 等 著 作。

華 羅 庚( 1910 ~ 1985 )

數 學 家, 中 國 科 學 院 院 士。 1910 年 11 月 12 日 生 於 江 蘇金 壇, 1985 年 6 月 12 日 卒 於 日 本 東 京。

1924 年 金 壇 中 學 初 中 畢 業, 後 刻 苦 自 學。 1930 年 後 在 清 華 大 學 任 教。 1936 年 赴 英 國 劍 橋 大 學 訪 問、 學 習。 1938 年 回 國 後 任 西 南 聯 合 大 學 教 授。 1946 年 赴 美 國, 任 普林 斯 頓 數 學 研 究 所 研 究 員、 普 林 斯 頓 大 學 和 伊 利 諾 斯 大 學 教 授, 1950 年 回 國。 歷 任 清 華 大 學 教授, 中 國 科 學 院 數 學 研 究 所、 應 用 數 學 研 究 所 所 長、 名 譽 所 長, 中 國 數 學 學 會 理 事 長、 名 譽 理 事 長,全 國 數 學 競 賽 委 員 會 主 任, 美 國 國 家 科 學 院 國 外 院 士, 第 三 世 界 科 學 院 院 士, 聯 邦 德 國 巴 伐 利 亞科 學 院 院 士, 中 國 科 學 院 物 理 學 數 學 化 學 部 副 主 任、 副 院 長、 主 席 團 成 員, 中 國 科 學 技 術 大 學 數學 系 主 任、 副 校 長, 中 國 科 協 副 主 席, 國 務 院 學 位 委 員 會 委 員 等 職。 曾 任 一 至 六 屆 全 國 人 大 常 務委 員, 六 屆 全 國 政 協 副 主 席。 曾 被 授 予 法 國 南 錫 大 學、 香 港 中 文 大 學 和 美 國 伊 利 諾 斯 大 學 榮 譽 博士 學 位。 主 要 從 事 解 析 數 論、 矩 陣 幾 何 學、 典 型 群、 自 守 函 數 論、 多 復 變 函 數 論、 偏 微 分 方 程、 高 維數 值 積 分 等 領 域 的 研 究 與 教 授 工 作 並 取 得 突 出 成 就。 40 年 代, 解 決 了 高 斯 完 整 三 角 和 的 估 計 這一 歷 史 難 題, 得 到 了 最 佳 誤 差 階 估 計 (此 結 果 在 數 論 中 有 著 廣 泛 的 應 用); 對 G.H.哈 代 與 J.E.李特 爾 伍 德 關 於 華 林 問 題 及 E.賴 特 關 於 塔 里 問 題 的 結 果 作 了 重 大 的 改 進, 至 今 仍 是 最 佳 紀 錄。

在 代 數 方 面, 證 明 了 歷 史 長 久 遺 留 的 一 維 射 影 幾 何 的 基 本 定 理; 給 出 了 體 的正 規 子 體 一 定 包 含 在 它 的 中 心 之 中 這 個 結 果 的 一 個 簡 單 而 直 接 的 證 明, 被 稱 為 嘉 當-布 饒 爾-華 定 理。其 專 著 《堆 壘 素 數 論》 系 統 地 總 結、 發 展 與 改 進 了 哈 代 與 李 特 爾 伍 德圓 法、 維 諾 格 拉 多 夫 三 角 和 估 計 方 法 及 他 本 人 的 方 法, 發 表 40 余 年 來 其 主 要 結 果 仍 居 世 界 領 先地 位, 先 後 被 譯 為 俄、 匈、 日、 德、 英 文 出 版, 成 為 20 世 紀 經 典 數 論 著 作 之 一。 其 專 著 《多 個 復 變 典型 域 上 的 調 和 分 析》 以 精 密 的 分 析 和 矩 陣 技 巧, 結 合 群 表 示 論, 具 體 給 出 了 典 型 域 的 完 整 正 交 系,從 而 給 出 了 柯 西 與 泊 松 核 的 表 達 式。 這 項 工 作 在 調 和 分 析、 復 分 析、 微 分 方 程 等 研 究 中 有 著 廣 泛深 入 的 影 響, 曾 獲 中 國 自 然 科 學 獎 一 等 獎。 倡 導 應 用 數 學 與 計 算 機 的 研 制, 曾 出 版 《統 籌 方 法 平話》、 《優 選 學》 等 多 部 著 作 並 在 中 國 推 廣 應 用。 與 王 元 教 授 合 作 在 近 代 數 論 方 法 應 用 研 究 方 面 獲重 要 成 果, 被 稱 為 「華-王 方 法」。 在 發 展 數 學 教 育 和 科 學 普 及 方 面 做 出 了 重 要 貢 獻。 發 表 研 究 論 文 200 多 篇, 並 有 專 著 和 科 普 性 著 作 數 十 種.

Ⅱ 微分方程的來源

微分方程研究的來源:它的研究來源極廣,歷史久遠。I.牛頓和G.W.萊布尼茨創造微分和積分運算時,指出了它們的互逆性,事實上這是解決了最簡單的微分方程y'=f(x)的求解問題。當人們用微積分學去研究幾何學、力學、物理學所提出的問題時,微分方程就大量地涌現出來。
20世紀以來,隨著大量的邊緣科學諸如電磁流體力學、化學流體力學、動力氣象學、海洋動力學、地下水動力學等等的產生和發展,也出現不少新型的微分方程(特別是方程組)。70年代隨著數學向化學和生物學的滲透,出現了大量的反應擴散方程。從「求通解」到「求解定解問題」 數學家們首先發現微分方程有無窮個解。常微分方程的解會含有一個或多個任意常數,其個數就是方程的階數。偏微分方程的解會含有一個或多個任意函數,其個數隨方程的階數而定。命方程的解含有的任意元素(即任意常數或任意函數)作盡可能的變化,人們就可能得到方程所有的解,於是數學家就把這種含有任意元素的解稱為「通解」。在很長一段時間里,人們致力於「求通解」。但是以下三種原因使得這種「求通解」的努力,逐漸被放棄。第一,能求得通解的方程顯然是很少的。在常微分方程方面,一階方程中可求得通解的,除了線性方程、可分離變數方程和用特殊方法變成這兩種方程的方程之外,為數是很小的。如果把求通解看作求微商及消去法的某一類逆運算,那麼,也和熟知的逆運算一樣,它是帶試探性而沒有一定的規則的,甚至有時是不可能的(J.劉維爾首先證明黎卡提方程不可能求出通解),何況這種通解也是隨著其自由度的增多而增加其求解的難度的。第二,當人們要明確通解的意義的時候(在19世紀初葉分析奠基時期顯然會考慮到此問題)就會碰到嚴重的含糊不清之處,達布在他的教學中經常提醒大家注意這些困難。這主要發生在偏微分方程的研究中。
第三,微分方程在物理學、力學中的重要應用,不在於求方程的任一解,而是求得滿足某些補充條件的解。A.-L.柯西認為這是放棄「求通解」的最重要的和決定性的原因。這些補充條件即定解條件。求方程滿足定解條件的解,稱之為求解定解問題。
早期由於外彈道學的需要,以及40年代由於高速氣動力學研究激波的需要,擬線性一階雙曲組的間斷解的研究更得到了重大發展,蘇聯和美國學者作出了貢獻。泛函分析和偏微分方程間的相互聯系,相互促進發展,首先應歸功於法、波、蘇等國學者的努力。
中華人民共和國建立後,微分方程得到了重視和發展。培養了許多優秀的微分方程的工作者,在常微分方程穩定性、極限環、結構穩定性等方面做出了很多有水平的結果;在偏微分方程混合型刻畫滲流問題的擬線性退縮拋物型、橢圓組和擬線性雙曲組的間斷解等方面做出了很多有水平的結果。

Ⅲ 方程式的發展歷史

一)屬於算術方面的材料

大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」

和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。

現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。

古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。

小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。

宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。

(二)屬於代數方面的材料

從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。

「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。

我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。

十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。

在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。

級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。

歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。

內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。

十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。

就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。

十一世紀,阿拉伯的阿爾·卡爾希第一次解出了二次方程的根。

十一世紀,阿拉伯的卡牙姆完成了一部系統研究三次方程的書《代數學》。

十一世紀中葉,中國宋朝的賈憲在《黃帝九章算術細草》中,創造了開任意高次冪的「增乘開方法」,並列出了二項式定理系數表,這是現代「組合數學」的早期發現。後人所稱的「楊輝三角」即指此法。

十二世紀,印度的拜斯迦羅著《立刺瓦提》一書,這是東方算術和計算方面的重要著作。

1202年,義大利的裴波那契發表《計算之書》,把印度—阿拉伯記數法介紹到西方。

1247年,中國宋朝的秦九韶著《數書九章》共十八卷,推廣了「增乘開方法」。書中提出的聯立一次同餘式的解法,比西方早五百七十餘年。

1248年,中國宋朝的李治著《測圓海鏡》十二卷,這是第一部系統論述「天元術」的著作。

1261年,中國宋朝的楊輝著《詳解九章演算法》,用「垛積術」求出幾類高階等差級數之和。

1274年,中國宋朝的楊輝發表《乘除通變本末》,敘述「九歸」捷法,介紹了籌算乘除的各種運演算法。

1280年,元朝《授時歷》用招差法編制日月的方位表(中國 王恂、郭守敬等)。

十四世紀中葉前,中國開始應用珠算盤。

1303年,中國元朝的朱世傑著《四元玉鑒》三卷,把「天元術」推廣為「四元術」。

人類對一元二次方程的研究經歷了漫長的歲月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比倫人已經能解一些一元二次方程。而在中國,《九章算術》「勾股」章中就有一題:「今有戶高多於廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?。」之後的丟番圖(古代希臘數學家),歐幾里德(古代希臘數學家),趙爽,張遂,楊輝對一元二次方程的貢獻更大。

結繩:最古的記數方法,傳為伏羲所創。

書器:一種最古的記數工具,傳為隸首所創。

河圖,洛書:相傳分別為伏羲、夏禹所作,是為最初的魔方陣。

八卦:傳為周公所創,是最初的二進製法。

規矩:傳為伏羲或綞所創,用以作方圓,測量田地與勘測水道。

幾何圖案:在金石陶器、石器時代的陶片、周秦時代的彝器已有簡單 的幾何圖形出現,其種類不下數十種。

九九:即個位數乘法表,傳為伏羲所創。古代數學家以九九之術作為初等數學的代表。

技術方法:當時是以累積之方法記數,已有百……億,兆等大數產生,都是以十進制的;也已有分數的產生。當時盛行的籌算,演變為後來的珠算術。

數論、方程論及數論得到進一步的研究,理論更臻完善。對中算史加以研究與著成專書。數學教育制度重新建立起來。此期末,西方數學第二次輸入中國,以補中算的不足,中國數學在此又進入另一階段。

Ⅳ 方程是含有未知數的等式,從簡單的代數方程到高級的微分方程和積分方程,說一下方程的發展史

方程是從解未知數抄或者未知量,而發展起來的。
有代數運算(加、減、乘、除、乘冪、開方、指數、對數),就有相應的代數方程。
隨著數集的變化(素數、自然數、整數、有理數、實數、復數、四元數),會出現越來越復雜的方程,
當然方程也推動了數集的擴張。
例如:在求解x²=2整數方程時,發現了√2無理數
在求解x²+1=0時,將實數擴張到復數。

矩陣工具被發現後,又出現了矩陣方程。

微積分運算問世後,就自然而然隨之出現微分方程、積分方程,有些方程是在解決實際工程(如力學、天體、電磁學等物理學)問題中,出現的,又產生了一些特殊函數的概念。
張量分析、泛函分析,理論發展之後,又衍生出一系列方程。

Ⅳ 常微分方程的起源背景發展史以及現狀是什麼急!!!

20世紀以來,隨著大量的邊緣科學諸如電磁流體力學、化學流體力學、動力氣象學、海洋動力學、地下水動力學等等的產生和發展,也出現不少新型的微分方程(特別是方程組)。70年代隨著數學向化學和生物學的滲透,出現了大量的反應擴散方程。 從「求通解」到「求解定解問題」 數學家們首先發現微分方程有無窮個解。常微分方程的解會含有一個或多個任意常數,其個數就是方程的階數。偏微分方程的解會含有一個或多個任意函數,其個數隨方程的階數而定。命方程的解含有的任意元素(即任意常數或任意函數)作盡可能的變化,人們就可能得到方程所有的解,於是數學家就把這種含有任意元素的解稱為「通解」。在很長一段時間里,人們致力於「求通解」。但是以下三種原因使得這種「求通解」的努力,逐漸被放棄。 常微分方程
第一,能求得通解的方程顯然是很少的。在常微分方程方面,一階方程中可求得通解的,除了線性方程、可分離變數方程和用特殊方法變成這兩種方程的方程之外,為數是很小的。高階方程中,線性方程仍可以用疊加原理求解,即□階齊次方程的通解是它的□個獨立特解的線性組合,其系數是任意常數。非齊次方程的通解等於相應齊次方程的通解加上非齊次方程的特解,這個特解並且可以用常數變易法通過求積分求得。求齊次方程的特解,當系數是常數時可歸結為求一代數方程的根,這個代數方程的次數則是原方程的階數;當系數是變數時,則只有二種極特殊的情況(歐拉方程、拉普拉斯方程)可以求得。至於非線性高階方程則除了少數幾種可降階情形(如方程(1)就是這幾種情形都有的一個方程)之外,可以求得通解的為數就更小了。□階方程也可以化為一階方程組(未知函數的個數和方程的個數都等於 □)早已為人們所知,並且在此後起著一定作用,但對通解的尋求仍無濟於事。 在偏微分方程方面,一階方程可以歸結為一階常微分方程組,但是如上所述,一階常微分方程組可以求得通解的還是很少的。高階方程中幾乎只有少數二階方程(如□,以及□,當用瀑布法時在一系列不變數中有一個開始為零的情形,和少數極個別的非線性方程如□□-□□□=□0等等)可以求得通解。在線性情形,推廣常數變易法則是杜阿美原理。

Ⅵ 常微分方程發展史論文怎麼寫

^^^^z=x^3y+5x^2y^3
dz=3x^2dx*y+x^3dy+5*2xdx*y^3+5x^2*3y^2dy
=(3x^2y+10xy^3)dx+(x^3+15x^2y^2)dy
則:
z|專'x=(3x^2y+10xy^3)z|'y=(x^3+15x^2y^2)
所:屬
z|''x=3y*2x+10y^3=6xy+10^3.
z|''y=15x^2*2y=30x^2y
z|''xy=3x^2+10x*3y^2=3x^2+30xy^2.

Ⅶ 求方程的發展史 很急!!!

人類對一元二次方程的研究經歷了漫長的歲月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比倫人已經能解一些一元二次方程。而在中國,《九章算術》「勾股」章中就有一題:「今有戶高多於廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?。」之後的丟番圖(古代希臘數學家),歐幾里德(古代希臘數學家),趙爽,張遂,楊輝對一元二次方程的貢獻更大
貝祖(Bezout Etienne 1730.3.31~1783.9.27)法國數學家。少年時酷愛數學,主要從事方程論研究。他是最先認識到行列式價值的數學家之一。最早證明了齊次線性方程組有非零解的條件是系數行列式等於零。他在其第一篇論文《幾種類型的方程》中用消元法將只含一個未知數的n次方程問題與解聯立方程組問題聯系起來,提供了某些n次方程的解法。他還用消元法解次數高於1的兩個二元方程,並證明了關於方程次數的貝祖定理。
1086~1093年,中國宋朝的沈括在《夢溪筆談》中提出「隙積術」和「會圓術」,開始高階等差級數的研究。

十一世紀,阿拉伯的阿爾·卡爾希第一次解出了二次方程的根。

十一世紀,阿拉伯的卡牙姆完成了一部系統研究三次方程的書《代數學》。

十一世紀,埃及的阿爾·海賽姆解決了「海賽姆」問題,即要在圓的平面上兩點作兩條線相交於圓周上一點,並與在該點的法線成等角。

十一世紀中葉,中國宋朝的賈憲在《黃帝九章算術細草》中,創造了開任意高次冪的「增乘開方法」,並列出了二項式定理系數表,這是現代「組合數學」的早期發現。後人所稱的「楊輝三角」即指此法。

十二世紀,印度的拜斯迦羅著《立刺瓦提》一書,這是東方算術和計算方面的重要著作。

1202年,義大利的裴波那契發表《計算之書》,把印度—阿拉伯記數法介紹到西方。

1220年,義大利的裴波那契發表《幾何學實習》一書,介紹了許多阿拉伯資料中沒有的示例。

1247年,中國宋朝的秦九韶著《數書九章》共十八卷,推廣了「增乘開方法」。書中提出的聯立一次同餘式的解法,比西方早五百七十餘年。

1248年,中國宋朝的李治著《測圓海鏡》十二卷,這是第一部系統論述「天元術」的著作。

1261年,中國宋朝的楊輝著《詳解九章演算法》,用「垛積術」求出幾類高階等差級數之和。

1274年,中國宋朝的楊輝發表《乘除通變本末》,敘述「九歸」捷法,介紹了籌算乘除的各種運演算法。

1280年,元朝《授時歷》用招差法編制日月的方位表(中國 王恂、郭守敬等)。

十四世紀中葉前,中國開始應用珠算盤。

1303年,中國元朝的朱世傑著《四元玉鑒》三卷,把「天元術」推廣為「四元術」。

1464年,德國的約·米勒在《論各種三角形》(1533年出版)中,系統地總結了三角學。

1494年,義大利的帕奇歐里發表《算術集成》,反映了當時所知道的關於算術、代數和三角學的知識。

1545年,義大利的卡爾達諾、費爾諾在《大法》中發表了求三次方程一般代數解的公式。

1550~1572年,義大利的邦別利出版《代數學》,其中引入了虛數,完全解決了三次方程的代數解問題。

1591年左右,德國的韋達在《美妙的代數》中首次使用字母表示數字系數的一般符號,推進了代數問題的一般討論。

1596~1613年,德國的奧脫、皮提斯庫斯完成了六個三角函數的每間隔10秒的十五位小數表。

1614年,英國的耐普爾制定了對數。

1615年,德國的開卜勒發表《酒桶的立體幾何學》,研究了圓錐曲線旋轉體的體積。

1635年,義大利的卡瓦列利發表《不可分連續量的幾何學》,書中避免無窮小量,用不可分量制定了一種簡單形式的微積分。

1637年,法國的笛卡爾出版《幾何學》,提出了解析幾何,把變數引進數學,成為「數學中的轉折點」。

1638年,法國的費爾瑪開始用微分法求極大、極小問題。

1638年,義大利的伽里略發表《關於兩種新科學的數學證明的論說》,研究距離、速度和加速度之間的關系,提出了無窮集合的概念,這本書被認為是伽里略重要的科學成就。

1639年,法國的迪沙格發表了《企圖研究圓錐和平面的相交所發生的事的草案》,這是近世射影幾何學的早期工作。

1641年,法國的帕斯卡發現關於圓錐內接六邊形的「帕斯卡定理」。

1649年,法國的帕斯卡製成帕斯卡計算器,它是近代計算機的先驅。

1654年,法國的帕斯卡、費爾瑪研究了概率論的基礎。

1655年,英國的瓦里斯出版《無窮算術》一書,第一次把代數學擴展到分析學。

1657年,荷蘭的惠更斯發表了關於概率論的早期論文《論機會游戲的演算》。

1658年,法國的帕斯卡出版《擺線通論》,對「擺線」進行了充分的研究。

1665~1676年,牛頓(1665~1666年)先於萊布尼茨(1673~1676年)制定了微積分,萊布尼茨(1684~1686年)早於牛頓(1704~1736年)發表了微積分。

1669年,英國的牛頓、雷夫遜發明解非線性方程的牛頓—雷夫遜方法。

1670年,法國的費爾瑪提出「費爾瑪大定理」。

1673年,荷蘭的惠更斯發表了《擺動的時鍾》,其中研究了平面曲線的漸屈線和漸伸線。

1684年,德國的萊布尼茨發表了關於微分法的著作《關於極大極小以及切線的新方法》。

1686年,德國的萊布尼茨發表了關於積分法的著作。

1691年,瑞士的約·貝努利出版《微分學初步》,這促進了微積分在物理學和力學上的應用及研究。

1696年,法國的洛比達發明求不定式極限的「洛比達法則」。

1697年,瑞士的約·貝努利解決了一些變分問題,發現最速下降線和測地線。

1704年,英國的牛頓發表《三次曲線枚舉》《利用無窮級數求曲線的面積和長度》《流數法》。

1711年,英國的牛頓發表《使用級數、流數等等的分析》。

1713年,瑞士的雅·貝努利出版了概率論的第一本著作《猜度術》。

1715年,英國的布·泰勒發表《增量方法及其他》。

1731年,法國的克雷洛出版《關於雙重曲率的曲線的研究》,這是研究空間解析幾何和微分幾何的最初嘗試。

1733年,英國的德·勒哈佛爾發現正態概率曲線。

1734年,英國的貝克萊發表《分析學者》,副標題是《致不信神的數學家》,攻擊牛頓的《流數法》,引起所謂第二次數學危機。

1736年,英國的牛頓發表《流數法和無窮級數》。

1736年,瑞士的歐拉出版《力學、或解析地敘述運動的理論》,這是用分析方法發展牛頓的質點動力學的第一本著作。

1742年,英國的麥克勞林引進了函數的冪級數展開法。

1744年,瑞士的歐拉導出了變分法的歐拉方程,發現某些極小曲面。

1747年,法國的達朗貝爾等由弦振動的研究而開創偏微分方程論。

1748年,瑞士的歐拉出版了系統研究分析數學的《無窮分析概要》,這是歐拉的主要著作之一。

1755~1774年,瑞士的歐拉出版了《微分學》和《積分學》三卷。書中包括微分方程論和一些特殊的函數。

1760~1761年,法國的拉格朗日系統地研究了變分法及其在力學上的應用。

1767年,法國的拉格朗日發現分離代數方程實根的方法和求其近似值的方法。

1770~1771年,法國的拉格朗日把置換群用於代數方程式求解,這是群論的開始。

1772年,法國的拉格朗日給出三體問題最初的特解。

1788年,法國的拉格朗日出版了《解析力學》,把新發展的解析法應用於質點、剛體力學。

1794年,法國的勒讓德出版流傳很廣的初等幾何學課本《幾何學概要》。

1794年,德國的高斯從研究測量誤差,提出最小二乘法,於1809年發表。

1797年,法國的拉格朗日發表《解析函數論》,不用極限的概念而用代數方法建立微分學。

1799年,法國的蒙日創立畫法幾何學,在工程技術中應用頗多。

1799年,德國的高斯證明了代數學的一個基本定理:實系數代數方程必有根。

微分方程:大致與微積分同時產生 。事實上,求y′=f(x)的原函數問題便是最簡單的微分方程。I.牛頓本人已經解決了二體問題:在太陽引力作用下,一個單一的行星的運動。他把兩個物體都理想化為質點,得到3個未知函數的3個二階方程組,經簡單計算證明,可化為平面問題,即兩個未知函數的兩個二階微分方程組。用現在叫做「首次積分」的辦法,完全解決了它的求解問題。17世紀就提出了彈性問題,這類問題導致懸鏈線方程、振動弦的方程等等。總之,力學、天文學、幾何學等領域的許多問題都導致微分方程。在當代,甚至許多社會科學的問題亦導致微分方程,如人口發展模型、交通流模型……。因而微分方程的研究是與人類社會密切相關的。當初,數學家們把精力集中放在求微分方程的通解上,後來證明這一般不可能,於是逐步放棄了這一奢望,而轉向定解問題:初值問題、邊值問題、混合問題等。但是,即便是一階常微分方程,初等解(化為積分形式)也被證明不可能,於是轉向定量方法(數值計算)、定性方法,而這首先要解決解的存在性、唯一性等理論上的問題。
方程對於學過中學數學的人來說是比較熟悉的;在初等數學中就有各種各樣的方程,比如線性方程、二次方程、高次方程、指數方程、對數方程、三角方程和方程組等等。這些方程都是要把研究的問題中的已知數和未知數之間的關系找出來,列出包含一個未知數或幾個未知數的一個或者多個方程式,然後取求方程的解。
但是在實際工作中,常常出現一些特點和以上方程完全不同的問題。比如:物質在一定條件下的運動變化,要尋求它的運動、變化的規律;某個物體在重力作用下自由下落,要尋求下落距離隨時間變化的規律;火箭在發動機推動下在空間飛行,要尋求它飛行的軌道,等等。
物質運動和它的變化規律在數學上是用函數關系來描述的,因此,這類問題就是要去尋求滿足某些條件的一個或者幾個未知函數。也就是說,凡是這類問題都不是簡單地去求一個或者幾個固定不變的數值,而是要求一個或者幾個未知的函數。
解這類問題的基本思想和初等數學解方程的基本思想很相似,也是要把研究的問題中已知函數和未知函數之間的關系找出來,從列出的包含未知函數的一個或幾個方程中去求得未知函數的表達式。但是無論在方程的形式、求解的具體方法、求出解的性質等方面,都和初等數學中的解方程有許多不同的地方。
在數學上,解這類方程,要用到微分和導數的知識。因此,凡是表示未知函數的導數以及自變數之間的關系的方程,就叫做微分方程。
微分方程差不多是和微積分同時先後產生的,蘇格蘭數學家耐普爾創立對數的時候,就討論過微分方程的近似解。牛頓在建立微積分的同時,對簡單的微分方程用級數來求解。後來瑞士數學家雅各布•貝努利、歐拉、法國數學家克雷洛、達朗貝爾、拉格朗日等人又不斷地研究和豐富了微分方程的理論。
常微分方程的形成與發展是和力學、天文學、物理學,以及其他科學技術的發展密切相關的。數學的其他分支的新發展,如復變函數、李群、組合拓撲學等,都對常微分方程的發展產生了深刻的影響,當前計算機的發展更是為常微分方程的應用及理論研究提供了非常有力的工具。
牛頓研究天體力學和機械力學的時候,利用了微分方程這個工具,從理論上得到了行星運動規律。後來,法國天文學家勒維烈和英國天文學家亞當斯使用微分方程各自計算出那時尚未發現的海王星的位置。這些都使數學家更加深信微分方程在認識自然、改造自然方面的巨大力量。
微分方程的理論逐步完善的時候,利用它就可以精確地表述事物變化所遵循的基本規律,只要列出相應的微分方程,有了解方程的方法。微分方程也就成了最有生命力的數學分支。

Ⅷ 偏微分方程的歷史

偏微分方程的起源

如果一個微分方程中出現的未知函數只含一個自變數,這個方程叫做常微分方程,也簡稱微分方程;如果一個微分方程中出現多元函數的偏導數,或者說如果未知函數和幾個變數有關,而且方程中出現未知函數對幾個變數的導數,那麼這種微分方程就是偏微分方程。

在科學技術日新月異的發展過程中,人們研究的許多問題用一個自變數的函數來描述已經顯得不夠了,不少問題有多個變數的函數來描述。比如,從物理角度來說,物理量有不同的性質,溫度、密度等是用數值來描述的叫做純量;速度、電場的引力等,不僅在數值上有不同,而且還具有方向,這些量叫做向量;物體在一點上的張力狀態的描述出的量叫做張量,等等。這些量不僅和時間有關系,而且和空間坐標也有聯系,這就要用多個變數的函數來表示。

應該指出,對於所有可能的物理現象用某些多個變數的函數表示,只能是理想化的,如介質的密度,實際上「在一點」的密度是不存在的。而我們把在一點的密度看作是物質的質量和體積的比當體積無限縮小的時候的極限,這就是理想化的。介質的溫度也是這樣。這樣就產生了研究某些物理現象的理想了的多個變數的函數方程,這種方程就是偏微分方程。

微積分方程這門學科產生於十八世紀,歐拉在他的著作中最早提出了弦振動的二階方程,隨後不久,法國數學家達朗貝爾也在他的著作《論動力學》中提出了特殊的偏微分方程。這些著作當時沒有引起多大注意。1746年,達朗貝爾在他的論文《張緊的弦振動時形成的曲線的研究》中,提議證明無窮多種和正弦曲線不同的曲線是振動的模式。這樣就由對弦振動的研究開創了偏微分方程這門學科。

和歐拉同時代的瑞士數學家丹尼爾·貝努利也研究了數學物理方面的問題,提出了解彈性系振動問題的一般方法,對偏微分方程的發展起了比較大的影響。拉格朗日也討論了一階偏微分方程,豐富了這門學科的內容。

偏微分方程得到迅速發展是在十九世紀,那時候,數學物理問題的研究繁榮起來了,許多數學家都對數學物理問題的解決做出了貢獻。這里應該提一提法國數學家傅立葉,他年輕的時候就是一個出色的數學學者。在從事熱流動的研究中,寫出了《熱的解析理論》,在文章中他提出了三維空間的熱方程,也就是一種偏微分方程。他的研究對偏微分方程的發展的影響是很大的。

偏微分方程的內容

偏微分方程是什麼樣的?它包括哪些內容?這里我們可從一個例子的研究加以介紹。

弦振動是一種機械運動,當然機械運動的基本定律是質點力學的 F=ma,但是弦並不是質點,所以質點力學的定律並不適用在弦振動的研究上。然而,如果我們把弦細細地分成若干個極小極小的小段,每一小段抽象地看作是一個質點,這樣我們就可以應用質點力學的基本定律了。

弦是指又細又長的彈性物質,比如弦樂器所用的弦就是細長的、柔軟的、帶有彈性的。演奏的時候,弦總是綳緊著具有一種張力,這種張力大於弦的重量幾萬倍。當演奏的人用薄片撥動或者用弓在弦上拉動,雖然只因其所接觸的一段弦振動,但是由於張力的作用,傳播到使整個弦振動起來。

用微分的方法分析可得到弦上一點的位移是這一點所在的位置和時間為自變數的偏微分方程。偏方程又很多種類型,一般包括橢圓型偏微分方程、拋物型偏微分方程、雙曲型偏微分方程。上述的例子是弦振動方程,它屬於數學物理方程中的波動方程,也就是雙曲型偏微分方程。

偏微分方程的解一般有無窮多個,但是解決具體的物理問題的時候,必須從中選取所需要的解,因此,還必須知道附加條件。因為偏微分方程是同一類現象的共同規律的表示式,僅僅知道這種共同規律還不足以掌握和了解具體問題的特殊性,所以就物理現象來說,各個具體問題的特殊性就在於研究對象所處的特定條件,就是初始條件和邊界條件。

拿上面所舉的弦振動的例子來說,對於同樣的弦的弦樂器,如果一種是以薄片撥動弦,另一種是以弓在弦上拉動,那麼它們發出的聲音是不同的。原因就是由於「撥動」或「拉動」的那個「初始」時刻的振動情況不同,因此產生後來的振動情況也就不同。

天文學中也有類似情況,如果要通過計算預言天體的運動,必須要知道這些天體的質量,同時除了牛頓定律的一般公式外,還必須知道我們所研究的天體系統的初始狀態,就是在某個起始時間,這些天體的分布以及它們的速度。在解決任何數學物理方程的時候,總會有類似的附加條件。

就弦振動來說,弦振動方程只表示弦的內點的力學規律,對弦的端點就不成立,所以在弦的兩端必須給出邊界條件,也就是考慮研究對象所處的邊界上的物理狀況。邊界條件也叫做邊值問題。

當然,客觀實際中也還是有「沒有初始條件的問題」,如定場問題(靜電場、穩定濃度分布、穩定溫度分布等),也有「沒有邊界條件的問題」,如著重研究不靠近兩端的那段弦,就抽象的成為無邊界的弦了。

在數學上,初始條件和邊界條件叫做定解條件。偏微分方程本身是表達同一類物理現象的共性,是作為解決問題的依據;定解條件卻反映出具體問題的個性,它提出了問題的具體情況。方程和定解條件合而為一體,就叫做定解問題。

求偏微分方程的定解問題可以先求出它的通解,然後再用定解條件確定出函數。但是一般來說,在實際中通解是不容易求出的,用定解條件確定函數更是比較困難的。

偏微分方程的解法還可以用分離系數法,也叫做傅立葉級數;還可以用分離變數法,也叫做傅立葉變換或傅立葉積分。分離系數法可以求解有界空間中的定解問題,分離變數法可以求解無界空間的定解問題;也可以用拉普拉斯變換法去求解一維空間的數學物理方程的定解。對方程實行拉普拉斯變換可以轉化成常微分方程,而且初始條件也一並考慮到,解出常微分方程後進行反演就可以了。

應該指出,偏微分方程的定解雖然有以上各種解法,但是我們不能忽視由於某些原因有許多定解問題是不能嚴格解出的,只可以用近似方法求出滿足實際需要的近似程度的近似解。

常用的方法有變分法和有限差分法。變分法是把定解問題轉化成變分問題,再求變分問題的近似解;有限差分法是把定解問題轉化成代數方程,然後用計算機進行計算;還有一種更有意義的模擬法,它用另一個物理的問題實驗研究來代替所研究某個物理問題的定解。雖然物理現象本質不同,但是抽象地表示在數學上是同一個定解問題,如研究某個不規則形狀的物體里的穩定溫度分布問題,在數學上是拉普拉斯方程的邊值問題,由於求解比較困難,可作相應的靜電場或穩恆電流場實驗研究,測定場中各處的電勢,從而也解決了所研究的穩定溫度場中的溫度分布問題。

隨著物理科學所研究的現象在廣度和深度兩方面的擴展,偏微分方程的應用范圍更廣泛。從數學自身的角度看,偏微分方程的求解促使數學在函數論、變分法、級數展開、常微分方程、代數、微分幾何等各方面進行發展。從這個角度說,偏微分方程變成了數學的中心。

Ⅸ 常微分方程的起源

就是常微分方程的內容,你仔細往下看啊
就看前兩句有什麼用。

方程對於學過中學數學的人來說是比較熟悉的;在初等數學中就有各種各樣的方程,比如線性方程、二次方程、高次方程、指數方程、對數方程、三角方程和方程組等等。這些方程都是要把研究的問題中的已知數和未知數之間的關系找出來,列出包含一個未知數或幾個未知數的一個或者多個方程式,然後取求方程的解。

但是在實際工作中,常常出現一些特點和以上方程完全不同的問題。比如:物質在一定條件下的運動變化,要尋求它的運動、變化的規律;某個物體在重力作用下自由下落,要尋求下落距離隨時間變化的規律;火箭在發動機推動下在空間飛行,要尋求它飛行的軌道,等等。

物質運動和它的變化規律在數學上是用函數關系來描述的,因此,這類問題就是要去尋求滿足某些條件的一個或者幾個未知函數。也就是說,凡是這類問題都不是簡單地去求一個或者幾個固定不變的數值,而是要求一個或者幾個未知的函數。

解這類問題的基本思想和初等數學解方程的基本思想很相似,也是要把研究的問題中已知函數和未知函數之間的關系找出來,從列出的包含未知函數的一個或幾個方程中去求得未知函數的表達式。但是無論在方程的形式、求解的具體方法、求出解的性質等方面,都和初等數學中的解方程有許多不同的地方。

在數學上,解這類方程,要用到微分和導數的知識。因此,凡是表示未知函數的導數以及自變數之間的關系的方程,就叫做微分方程。

微分方程差不多是和微積分同時先後產生的,蘇格蘭數學家耐普爾創立對數的時候,就討論過微分方程的近似解。牛頓在建立微積分的同時,對簡單的微分方程用級數來求解。後來瑞士數學家雅各布·貝努利、歐拉、法國數學家克雷洛、達朗貝爾、拉格朗日等人又不斷地研究和豐富了微分方程的理論。

常微分方程的形成與發展是和力學、天文學、物理學,以及其他科學技術的發展密切相關的。數學的其他分支的新發展,如復變函數、李群、組合拓撲學等,都對常微分方程的發展產生了深刻的影響,當前計算機的發展更是為常微分方程的應用及理論研究提供了非常有力的工具。

牛頓研究天體力學和機械力學的時候,利用了微分方程這個工具,從理論上得到了行星運動規律。後來,法國天文學家勒維烈和英國天文學家亞當斯使用微分方程各自計算出那時尚未發現的海王星的位置。這些都使數學家更加深信微分方程在認識自然、改造自然方面的巨大力量。

微分方程的理論逐步完善的時候,利用它就可以精確地表述事物變化所遵循的基本規律,只要列出相應的微分方程,有了解方程的方法。微分方程也就成了最有生命力的數學分支。

常微分方程的內容

如果在一個微分方程中出現的未知函數只含一個自變數,這個方程就叫做常微分方程,也可以簡單地叫做微分方程。

一般地說,n 階微分方程的解含有 n個任意常數。也就是說,微分方程的解中含有任意常數的個數和方程的解數相同,這種解叫做微分方程的通解。通解構成一個函數族。

如果根據實際問題要求出其中滿足某種指定條件的解來,那麼求這種解的問題叫做定解問題,對於一個常微分方程的滿足定解條件的解叫做特解。對於高階微分方程可以引入新的未知函數,把它化為多個一階微分方程組。

常微分方程的特點

常微分方程的概念、解法、和其它理論很多,比如,方程和方程組的種類及解法、解的存在性和唯一性、奇解、定性理論等等。下面就方程解的有關幾點簡述一下,以了解常微分方程的特點。

求通解在歷史上曾作為微分方程的主要目標,一旦求出通解的表達式,就容易從中得到問題所需要的特解。也可以由通解的表達式,了解對某些參數的依賴情況,便於參數取值適宜,使它對應的解具有所需要的性能,還有助於進行關於解的其他研究。

後來的發展表明,能夠求出通解的情況不多,在實際應用中所需要的多是求滿足某種指定條件的特解。當然,通解是有助於研究解的屬性的,但是人們已把研究重點轉移到定解問題上來。

一個常微分方程是不是有特解呢?如果有,又有幾個呢?這是微分方程論中一個基本的問題,數學家把它歸納成基本定理,叫做存在和唯一性定理。因為如果沒有解,而我們要去求解,那是沒有意義的;如果有解而又不是唯一的,那又不好確定。因此,存在和唯一性定理對於微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精確的解,而只能得到近似解。當然,這個近似解的精確程度是比較高的。另外還應該指出,用來描述物理過程的微分方程,以及由試驗測定的初始條件也是近似的,這種近似之間的影響和變化還必須在理論上加以解決。

現在,常微分方程在很多學科領域內有著重要的應用,自動控制、各種電子學裝置的設計、彈道的計算、飛機和導彈飛行的穩定性的研究、化學反應過程穩定性的研究等。這些問題都可以化為求常微分方程的解,或者化為研究解的性質的問題。應該說,應用常微分方程理論已經取得了很大的成就,但是,它的現有理論也還遠遠不能滿足需要,還有待於進一步的發展,使這門學科的理論更加完善。

Ⅹ 數學中的常微分方程的歷史意義是什麼,誰能告訴我

微分方程的理論和方法是從17世紀末開始發展起來的,很快就成為了研究自然現象版的強有力工具最權初,牛頓應用微積分學及微分方程對丹麥天文學家第谷浩瀚的天文觀測測進行進行了分析運算,得到萬有引力利利利利並進一步導出了開普勒行星運動三定律。記住微分方程,在力學天文物理和科學技術中取得了巨大成就就如質點動力學和剛體動力學的問題,就很容易化為微分方程的求解問題常微分
常微分方程也在許多方面獲得了日新月異的應用。它的歷史意義是承上啟下吧。😹😹

閱讀全文

與微分方程的發展歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296